paddlehub实现人物抠图换背景

2024-02-27 01:58

本文主要是介绍paddlehub实现人物抠图换背景,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 简介
  • paddlehub安装
  • 功能实现
    • 引入库
    • 用到的hub库
    • 每帧的图像处理
    • 结果输出
  • 总结


前言

看完文章您将学会:

paddlehub的使用方法
如何用cv2加载图片并保存
如何用cv2逐帧加载视频以及将图片逐帧保存成视频
如何将png格式的图片放入另一张图片
本文涉及paddlehub的人脸检测、图像分割和图像生成三个部分
详细的文档请访问: https://www.paddlepaddle.org.cn/hub

简介

本项目通过人脸检测将人脸遮挡实现打马赛的功能,同时通过风格转换和抠图将人物放置在新的背景下实现换背景的效果。
处理后的图片效果图:
在这里插入图片描述

paddlehub安装

pip install paddlehub --upgrade -i https://mirror.baidu.com/pypi/simple
paddlehub 中的模型对版本有要求
请安装最新版本的paddlehub
或者根据需要指定安装版本:

hub install name==version

功能实现

引入库

代码如下:

import paddle
import paddlehub as hub
import numpy as np
from PIL import Image, ImageFilter, ImageDraw
import cv2, osimport matplotlib.pyplot as plt
%matplotlib inlineprint(paddle.__version__)

用到的hub库

代码如下:

#用于人脸检测
face_detection = hub.Module(name="ultra_light_fast_generic_face_detector_1mb_640")
#用于风格转换
stylepro_artistic = hub.Module(name="stylepro_artistic")
#用于扣出人物
humanseg = hub.Module(name="deeplabv3p_xception65_humanseg")

可以查看一下数据的输出格式,本文中默认只考虑一个物体的情况:

# 查看一下使用方法及输出格式, 这里默认一张图片中只有一个目标物
face_detection_res = face_detection.face_detection(images=[cv2.imread('./work/me1.jpg')],paths=None,batch_size=1,use_gpu=False,visualization=False,output_dir=None,confs_threshold=0.5)
# [0]['data']
result = stylepro_artistic.style_transfer( images=[{'content': cv2.imread('./dog.png'),'styles': [cv2.imread('./style/style1.jpg'), cv2.imread('./style/style2.jpg'),cv2.imread('./style/style3.jpg'),cv2.imread('./style/style4.jpg'),cv2.imread('./style/style5.jpg')]}],visualization=True)
# [0]['data']
seg_res = humanseg.segment(images=[cv2.imread('./work/me1.jpg')],paths=None,batch_size=1,use_gpu=False,visualization=True,output_dir='humanseg_output')
# [0]['data']

每帧的图像处理

通过修改precess_img可以实现不同的处理效果。

def process_img(frame_bgr, index=0):'''输入一张图片shape=[H, W, C] 通道为bgr格式'''ratio = 1.4 y_offset = 30num_fps = 150t = 1h, w = frame_bgr.shape[:2]size = frame_bgr.shape[:2]face_detector = MyFaceDetector()face_detection_res = face_detector.face_detection(images=[frame_bgr], use_gpu=False, visualization=False)for box_dict in face_detection_res[0]['data']:box_xyxy = ( int(box_dict['left']), int(box_dict['top']), int(box_dict['right']), int(box_dict['bottom']) )box_xywh = int((box_xyxy[0]+box_xyxy[2])/2), int((box_xyxy[1]+box_xyxy[3])/2), box_xyxy[2]-box_xyxy[0], box_xyxy[3]-box_xyxy[1]correct_box_xywh = box_xywh[0], box_xywh[1]-y_offset, int(box_xywh[2]*ratio), int(box_xywh[3]*ratio)#真实框xyxybox = int(correct_box_xywh[0]-correct_box_xywh[2]/2) if int(correct_box_xywh[0]-correct_box_xywh[2]/2) >= 0 else 0, \int(correct_box_xywh[1]-correct_box_xywh[3]/2) if int(correct_box_xywh[1]-correct_box_xywh[3]/2) >= 0 else 0, \int(correct_box_xywh[0]+correct_box_xywh[2]/2) if int(correct_box_xywh[0]+correct_box_xywh[2]/2) <= size[1] else size[1], \int(correct_box_xywh[1]+correct_box_xywh[3]/2) if int(correct_box_xywh[1]+correct_box_xywh[3]/2) <= size[0] else size[0]dog = cv2.imread('./dog.png', -1) # -1 读取alpha通道dog = cv2.resize(dog, ( box[2]-box[0] if (box[2]-box[0])>0 else 1 , box[3]-box[1] if (box[3]-box[1])>0 else 1) )dog_alpha = dog[:,:,3] != 0dog_alpha = np.repeat(dog_alpha[:,:,np.newaxis], axis=2, repeats=3)human_alpha = humanseg.segmentation(images=[frame_bgr],paths=None,batch_size=1,use_gpu=False,visualization=False,output_dir='humanseg_output')[0]['data']human_alpha = np.repeat(human_alpha[:,:,np.newaxis], axis=2, repeats=3) != 0if index <= num_fps:bg = cv2.imread('./bg1.png')bg = cv2.resize(bg, (w, h))elif index > num_fps and index < (num_fps + t*30):beta = (index-num_fps)/30bg = beta * cv2.imread('./bg2.jpg')/255. + (1 - beta) * cv2.imread('./bg1.jpg')/255.bg = bg * 255bg = bg.astype('uint8')bg = cv2.resize(bg, (w, h))else:bg = cv2.imread('./bg2.png')bg = cv2.resize(bg, (w, h))# 加了这两项后运算时间会大大延长# frame_bgr = stylepro_artistic.style_transfer(images=[{'content': frame_bgr,#     'styles': [cv2.imread('./style/style1.jpg')]#                                                        }],  use_gpu=False,#                                                 visualization=False)[0]['data']# dog = stylepro_artistic.style_transfer(images=[{'content': dog[:,:,:3],#     'styles': [cv2.imread('./style/style1.jpg')]#                                                        }],  use_gpu=False,#                                                 visualization=False)[0]['data']bg[human_alpha] = frame_bgr[human_alpha] #根据alpah矩阵赋值bg[box[1]:box[1]+dog.shape[0], box[0]:box[0]+dog.shape[1], :][dog_alpha] = dog[:,:,:3][dog_alpha]#     dog = cv2.imread('./dog.png', -1)#     point_boxwh = (point[0], point[1] - (box[3]-box[1])//2 , box[2]-box[0], box[3]-box[1])
#
#     point_box = point_boxwh[0]-point_boxwh[2]//2 if (point_boxwh[0]-point_boxwh[2]//2) >= 0 else 0, \
#                 point_boxwh[1]-point_boxwh[3]//2 if (point_boxwh[1]-point_boxwh[3]//2) >= 0 else 0, \
#                 point_boxwh[0]+point_boxwh[2]//2 if (point_boxwh[0]+point_boxwh[2]//2) <= size[1] else size[1], \
#                 point_boxwh[1]+point_boxwh[3]//2 if (point_boxwh[1]+point_boxwh[3]//2) <= size[0] else size[0]
#     dog = cv2.resize(dog, ( point_box[2]-point_box[0] if (point_box[2]-point_box[0])>0 else 1,  point_box[3]-point_box[1] if (point_box[3]-point_box[1])>0 else 1) )
#     alpha_channel = dog[:,:,3] != 0
#     alpha_channel = np.repeat(alpha_channel[:,:,np.newaxis], axis=2, repeats=3)
# #     assert point_box[1]:point_box[1]+dog.shape[0], point_box[0]: point_box[0]+dog.shape[1]
#     frame_bgr[point_box[1]:point_box[1]+dog.shape[0], point_box[0]: point_box[0]+dog.shape[1],:][alpha_channel] = dog[:,:,:3][alpha_channel]return bgdef CutVideo2Image(video_path, img_path):#将视频输出为图像#video_path为输入视频文件路径#img_path为输出图像文件夹路径cap = cv2.VideoCapture(video_path)index = 0while(True):ret,frame = cap.read() if ret:cv2.imwrite(img_path+'/%d.jpg'%index, frame)index += 1else:breakcap.release()class MyFaceDetector(object):"""自定义人脸检测器基于PaddleHub人脸检测模型ultra_light_fast_generic_face_detector_1mb_640,加强稳定人脸检测框"""def __init__(self):self.module = hub.Module(name="ultra_light_fast_generic_face_detector_1mb_640")self.alpha = 0.75self.start_flag =1def face_detection(self,images, use_gpu=False, visualization=False):# 使用GPU运行,use_gpu=True,并且在运行整个教程代码之前设置CUDA_VISIBLE_DEVICES环境变量result = self.module.face_detection(images=images, use_gpu=use_gpu, visualization=visualization)if not result[0]['data']:return resultface = result[0]['data'][0]if self.start_flag == 1:self.left_s = result[0]['data'][0]['left']self.right_s = result[0]['data'][0]['right']self.top_s = result[0]['data'][0]['top']self.bottom_s = result[0]['data'][0]['bottom']self.start_flag=0else:# 加权平均上一帧和当前帧人脸检测框位置,以稳定人脸检测框self.left_s = self.alpha * self.left_s +  (1-self.alpha) * face['left'] self.right_s = self.alpha * self.right_s +  (1-self.alpha) * face['right'] self.top_s = self.alpha * self.top_s +  (1-self.alpha) * face['top']self.bottom_s = self.alpha * self.bottom_s + (1-self.alpha) * face['bottom'] result[0]['data'][0]['left'] = self.left_sresult[0]['data'][0]['right'] = self.right_sresult[0]['data'][0]['top'] = self.top_sresult[0]['data'][0]['bottom'] = self.bottom_sreturn result

结果输出

def generate_image():# 打开摄像头# capture  = cv2.VideoCapture(0) capture  = cv2.VideoCapture('./test.mp4')fps = capture.get(cv2.CAP_PROP_FPS)size = (int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)),int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))# 将预测结果写成视频video_writer = cv2.VideoWriter('result.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, size)print(f'fps={fps}, size={size}')index = 0while True:# frame_rgb即视频的一帧数据ret, frame_bgr = capture.read() #从capture中读取帧# 按q键即可退出# cv2.imwrite('./work/me1.jpg', frame_bgr)# breakif cv2.waitKey(1) & 0xFF == ord('q'):breakif frame_bgr is None:break# cv2.imwrite('./work'+'/%d.jpg'%index, frame_bgr)index += 1#图像处理frame_bgr = process_img(frame_bgr, index)video_writer.write(frame_bgr) #写入帧# frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_RGB2BGR)  # cv2.COLOR_RGB2BGR就是把0, 2 通道互换# yield frame_rgbcapture.release()video_writer.release()cv2.destroyAllWindows()generate_image()

总结

视频中人物的抠图效果需要提升,可以通过在cv2中进一步处理提升画面效果。
另外声音需要后期合成后单独加入,后续我会想办法把声音加上。

总的来看,paddlehub将一些主流的模型集成起来做成相应的接口,当需要时直接调用即可,使用起来也非常方便。这极大的降低了网络的使用门槛,只需要少量的代码即可实现复杂的功能。

这篇关于paddlehub实现人物抠图换背景的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/750880

相关文章

Python实现AVIF图片与其他图片格式间的批量转换

《Python实现AVIF图片与其他图片格式间的批量转换》这篇文章主要为大家详细介绍了如何使用Pillow库实现AVIF与其他格式的相互转换,即将AVIF转换为常见的格式,比如JPG或PNG,需要的小... 目录环境配置1.将单个 AVIF 图片转换为 JPG 和 PNG2.批量转换目录下所有 AVIF 图

Pydantic中model_validator的实现

《Pydantic中model_validator的实现》本文主要介绍了Pydantic中model_validator的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录引言基础知识创建 Pydantic 模型使用 model_validator 装饰器高级用法mo

AJAX请求上传下载进度监控实现方式

《AJAX请求上传下载进度监控实现方式》在日常Web开发中,AJAX(AsynchronousJavaScriptandXML)被广泛用于异步请求数据,而无需刷新整个页面,:本文主要介绍AJAX请... 目录1. 前言2. 基于XMLHttpRequest的进度监控2.1 基础版文件上传监控2.2 增强版多

Redis分片集群的实现

《Redis分片集群的实现》Redis分片集群是一种将Redis数据库分散到多个节点上的方式,以提供更高的性能和可伸缩性,本文主要介绍了Redis分片集群的实现,具有一定的参考价值,感兴趣的可以了解一... 目录1. Redis Cluster的核心概念哈希槽(Hash Slots)主从复制与故障转移2.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

Docker镜像修改hosts及dockerfile修改hosts文件的实现方式

《Docker镜像修改hosts及dockerfile修改hosts文件的实现方式》:本文主要介绍Docker镜像修改hosts及dockerfile修改hosts文件的实现方式,具有很好的参考价... 目录docker镜像修改hosts及dockerfile修改hosts文件准备 dockerfile 文

基于SpringBoot+Mybatis实现Mysql分表

《基于SpringBoot+Mybatis实现Mysql分表》这篇文章主要为大家详细介绍了基于SpringBoot+Mybatis实现Mysql分表的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录基本思路定义注解创建ThreadLocal创建拦截器业务处理基本思路1.根据创建时间字段按年进

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N