paddlehub实现人物抠图换背景

2024-02-27 01:58

本文主要是介绍paddlehub实现人物抠图换背景,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 简介
  • paddlehub安装
  • 功能实现
    • 引入库
    • 用到的hub库
    • 每帧的图像处理
    • 结果输出
  • 总结


前言

看完文章您将学会:

paddlehub的使用方法
如何用cv2加载图片并保存
如何用cv2逐帧加载视频以及将图片逐帧保存成视频
如何将png格式的图片放入另一张图片
本文涉及paddlehub的人脸检测、图像分割和图像生成三个部分
详细的文档请访问: https://www.paddlepaddle.org.cn/hub

简介

本项目通过人脸检测将人脸遮挡实现打马赛的功能,同时通过风格转换和抠图将人物放置在新的背景下实现换背景的效果。
处理后的图片效果图:
在这里插入图片描述

paddlehub安装

pip install paddlehub --upgrade -i https://mirror.baidu.com/pypi/simple
paddlehub 中的模型对版本有要求
请安装最新版本的paddlehub
或者根据需要指定安装版本:

hub install name==version

功能实现

引入库

代码如下:

import paddle
import paddlehub as hub
import numpy as np
from PIL import Image, ImageFilter, ImageDraw
import cv2, osimport matplotlib.pyplot as plt
%matplotlib inlineprint(paddle.__version__)

用到的hub库

代码如下:

#用于人脸检测
face_detection = hub.Module(name="ultra_light_fast_generic_face_detector_1mb_640")
#用于风格转换
stylepro_artistic = hub.Module(name="stylepro_artistic")
#用于扣出人物
humanseg = hub.Module(name="deeplabv3p_xception65_humanseg")

可以查看一下数据的输出格式,本文中默认只考虑一个物体的情况:

# 查看一下使用方法及输出格式, 这里默认一张图片中只有一个目标物
face_detection_res = face_detection.face_detection(images=[cv2.imread('./work/me1.jpg')],paths=None,batch_size=1,use_gpu=False,visualization=False,output_dir=None,confs_threshold=0.5)
# [0]['data']
result = stylepro_artistic.style_transfer( images=[{'content': cv2.imread('./dog.png'),'styles': [cv2.imread('./style/style1.jpg'), cv2.imread('./style/style2.jpg'),cv2.imread('./style/style3.jpg'),cv2.imread('./style/style4.jpg'),cv2.imread('./style/style5.jpg')]}],visualization=True)
# [0]['data']
seg_res = humanseg.segment(images=[cv2.imread('./work/me1.jpg')],paths=None,batch_size=1,use_gpu=False,visualization=True,output_dir='humanseg_output')
# [0]['data']

每帧的图像处理

通过修改precess_img可以实现不同的处理效果。

def process_img(frame_bgr, index=0):'''输入一张图片shape=[H, W, C] 通道为bgr格式'''ratio = 1.4 y_offset = 30num_fps = 150t = 1h, w = frame_bgr.shape[:2]size = frame_bgr.shape[:2]face_detector = MyFaceDetector()face_detection_res = face_detector.face_detection(images=[frame_bgr], use_gpu=False, visualization=False)for box_dict in face_detection_res[0]['data']:box_xyxy = ( int(box_dict['left']), int(box_dict['top']), int(box_dict['right']), int(box_dict['bottom']) )box_xywh = int((box_xyxy[0]+box_xyxy[2])/2), int((box_xyxy[1]+box_xyxy[3])/2), box_xyxy[2]-box_xyxy[0], box_xyxy[3]-box_xyxy[1]correct_box_xywh = box_xywh[0], box_xywh[1]-y_offset, int(box_xywh[2]*ratio), int(box_xywh[3]*ratio)#真实框xyxybox = int(correct_box_xywh[0]-correct_box_xywh[2]/2) if int(correct_box_xywh[0]-correct_box_xywh[2]/2) >= 0 else 0, \int(correct_box_xywh[1]-correct_box_xywh[3]/2) if int(correct_box_xywh[1]-correct_box_xywh[3]/2) >= 0 else 0, \int(correct_box_xywh[0]+correct_box_xywh[2]/2) if int(correct_box_xywh[0]+correct_box_xywh[2]/2) <= size[1] else size[1], \int(correct_box_xywh[1]+correct_box_xywh[3]/2) if int(correct_box_xywh[1]+correct_box_xywh[3]/2) <= size[0] else size[0]dog = cv2.imread('./dog.png', -1) # -1 读取alpha通道dog = cv2.resize(dog, ( box[2]-box[0] if (box[2]-box[0])>0 else 1 , box[3]-box[1] if (box[3]-box[1])>0 else 1) )dog_alpha = dog[:,:,3] != 0dog_alpha = np.repeat(dog_alpha[:,:,np.newaxis], axis=2, repeats=3)human_alpha = humanseg.segmentation(images=[frame_bgr],paths=None,batch_size=1,use_gpu=False,visualization=False,output_dir='humanseg_output')[0]['data']human_alpha = np.repeat(human_alpha[:,:,np.newaxis], axis=2, repeats=3) != 0if index <= num_fps:bg = cv2.imread('./bg1.png')bg = cv2.resize(bg, (w, h))elif index > num_fps and index < (num_fps + t*30):beta = (index-num_fps)/30bg = beta * cv2.imread('./bg2.jpg')/255. + (1 - beta) * cv2.imread('./bg1.jpg')/255.bg = bg * 255bg = bg.astype('uint8')bg = cv2.resize(bg, (w, h))else:bg = cv2.imread('./bg2.png')bg = cv2.resize(bg, (w, h))# 加了这两项后运算时间会大大延长# frame_bgr = stylepro_artistic.style_transfer(images=[{'content': frame_bgr,#     'styles': [cv2.imread('./style/style1.jpg')]#                                                        }],  use_gpu=False,#                                                 visualization=False)[0]['data']# dog = stylepro_artistic.style_transfer(images=[{'content': dog[:,:,:3],#     'styles': [cv2.imread('./style/style1.jpg')]#                                                        }],  use_gpu=False,#                                                 visualization=False)[0]['data']bg[human_alpha] = frame_bgr[human_alpha] #根据alpah矩阵赋值bg[box[1]:box[1]+dog.shape[0], box[0]:box[0]+dog.shape[1], :][dog_alpha] = dog[:,:,:3][dog_alpha]#     dog = cv2.imread('./dog.png', -1)#     point_boxwh = (point[0], point[1] - (box[3]-box[1])//2 , box[2]-box[0], box[3]-box[1])
#
#     point_box = point_boxwh[0]-point_boxwh[2]//2 if (point_boxwh[0]-point_boxwh[2]//2) >= 0 else 0, \
#                 point_boxwh[1]-point_boxwh[3]//2 if (point_boxwh[1]-point_boxwh[3]//2) >= 0 else 0, \
#                 point_boxwh[0]+point_boxwh[2]//2 if (point_boxwh[0]+point_boxwh[2]//2) <= size[1] else size[1], \
#                 point_boxwh[1]+point_boxwh[3]//2 if (point_boxwh[1]+point_boxwh[3]//2) <= size[0] else size[0]
#     dog = cv2.resize(dog, ( point_box[2]-point_box[0] if (point_box[2]-point_box[0])>0 else 1,  point_box[3]-point_box[1] if (point_box[3]-point_box[1])>0 else 1) )
#     alpha_channel = dog[:,:,3] != 0
#     alpha_channel = np.repeat(alpha_channel[:,:,np.newaxis], axis=2, repeats=3)
# #     assert point_box[1]:point_box[1]+dog.shape[0], point_box[0]: point_box[0]+dog.shape[1]
#     frame_bgr[point_box[1]:point_box[1]+dog.shape[0], point_box[0]: point_box[0]+dog.shape[1],:][alpha_channel] = dog[:,:,:3][alpha_channel]return bgdef CutVideo2Image(video_path, img_path):#将视频输出为图像#video_path为输入视频文件路径#img_path为输出图像文件夹路径cap = cv2.VideoCapture(video_path)index = 0while(True):ret,frame = cap.read() if ret:cv2.imwrite(img_path+'/%d.jpg'%index, frame)index += 1else:breakcap.release()class MyFaceDetector(object):"""自定义人脸检测器基于PaddleHub人脸检测模型ultra_light_fast_generic_face_detector_1mb_640,加强稳定人脸检测框"""def __init__(self):self.module = hub.Module(name="ultra_light_fast_generic_face_detector_1mb_640")self.alpha = 0.75self.start_flag =1def face_detection(self,images, use_gpu=False, visualization=False):# 使用GPU运行,use_gpu=True,并且在运行整个教程代码之前设置CUDA_VISIBLE_DEVICES环境变量result = self.module.face_detection(images=images, use_gpu=use_gpu, visualization=visualization)if not result[0]['data']:return resultface = result[0]['data'][0]if self.start_flag == 1:self.left_s = result[0]['data'][0]['left']self.right_s = result[0]['data'][0]['right']self.top_s = result[0]['data'][0]['top']self.bottom_s = result[0]['data'][0]['bottom']self.start_flag=0else:# 加权平均上一帧和当前帧人脸检测框位置,以稳定人脸检测框self.left_s = self.alpha * self.left_s +  (1-self.alpha) * face['left'] self.right_s = self.alpha * self.right_s +  (1-self.alpha) * face['right'] self.top_s = self.alpha * self.top_s +  (1-self.alpha) * face['top']self.bottom_s = self.alpha * self.bottom_s + (1-self.alpha) * face['bottom'] result[0]['data'][0]['left'] = self.left_sresult[0]['data'][0]['right'] = self.right_sresult[0]['data'][0]['top'] = self.top_sresult[0]['data'][0]['bottom'] = self.bottom_sreturn result

结果输出

def generate_image():# 打开摄像头# capture  = cv2.VideoCapture(0) capture  = cv2.VideoCapture('./test.mp4')fps = capture.get(cv2.CAP_PROP_FPS)size = (int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)),int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))# 将预测结果写成视频video_writer = cv2.VideoWriter('result.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, size)print(f'fps={fps}, size={size}')index = 0while True:# frame_rgb即视频的一帧数据ret, frame_bgr = capture.read() #从capture中读取帧# 按q键即可退出# cv2.imwrite('./work/me1.jpg', frame_bgr)# breakif cv2.waitKey(1) & 0xFF == ord('q'):breakif frame_bgr is None:break# cv2.imwrite('./work'+'/%d.jpg'%index, frame_bgr)index += 1#图像处理frame_bgr = process_img(frame_bgr, index)video_writer.write(frame_bgr) #写入帧# frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_RGB2BGR)  # cv2.COLOR_RGB2BGR就是把0, 2 通道互换# yield frame_rgbcapture.release()video_writer.release()cv2.destroyAllWindows()generate_image()

总结

视频中人物的抠图效果需要提升,可以通过在cv2中进一步处理提升画面效果。
另外声音需要后期合成后单独加入,后续我会想办法把声音加上。

总的来看,paddlehub将一些主流的模型集成起来做成相应的接口,当需要时直接调用即可,使用起来也非常方便。这极大的降低了网络的使用门槛,只需要少量的代码即可实现复杂的功能。

这篇关于paddlehub实现人物抠图换背景的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/750880

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被