第三篇 FastAI数据构造API

2024-02-27 00:32

本文主要是介绍第三篇 FastAI数据构造API,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一篇博客介绍了如何调用ImageDataBunch的工厂类方法,生成Fast AI的模型所需的数据包(Data Bunch)。事实上,Fast AI提供了一系列函数接口,使得构建数据包的流程更符合逻辑且更灵活,而前述博客所示的工厂类方法其实也是基于这些API进行构建的。本篇博客将介绍相关的数据类型以及API

一、Fast AI的数据积木(Data Block)API (文档链接)

DataBunch类的功能就是整合trainvalid的数据加载器(即PyTorch里的DataLoader)。而使用Data Block API一步一步构建DataBunch的流程如下图所示:

图 1. 使用DataBlock API构建DataBunch的流程
对于该流程中各个步骤以及所用的类介绍如下。
1. 数据列表:ItemList

ItemList是用于存储数据的列表类(即提供了索引功能)。针对不同的任务以及各类型的标签,Fast AI提供了ItemList的各种子类,其中与视觉应用相关的子类包括:

  • CategoryList: 分类问题的类别标签列表
  • MultiCategoryList: 多标签问题的多类别标签列表
  • FloatList: 回归问题的浮点数标签列表
  • ImageList: 图像(标签)列表
  • SegmentationLabelList: 分割任务的掩膜标签列表
  • ObjectLabelList: 目标检测任务的目标框标签列表
  • PointsItemList: 关键点检测任务的点标签列表

ItemList提供了几种生成ItemList实例的工厂类方法:

  • from_folder()工厂类方法

    @classmethod
    def from_folder(cls,path:PathOrStr, # 数据目录extensions:Collection[str]=None, # 只获取特定扩展名的文件recurse:bool=True, # 是否进行文件路径的迭代查找include:Optional[Collection[str]]=None, # 指定路径的最后一层的列表processor:PreProcessors=None,presort:Optional[bool]=False, # 是否对文件进行排序**kwargs)->'ItemList'
    
  • from_df()工厂类方法

    @classmethod
    def from_df(cls,df:DataFrame,path:PathOrStr='.',cols:IntsOrStrs=0, # 数据所在的列processor:PreProcessors=None, **kwargs)->'ItemList'
    
  • from_csv()工厂类方法

    @classmethod
    def from_csv(cls,path:PathOrStr,csv_name:str,cols:IntsOrStrs=0,delimiter:str=None, header:str='infer',processor:PreProcessors=None, **kwargs)->'ItemList'
    

此外,ItemList还提供了几个用于数据过滤的函数:

  • 1.filter_by_func(func): 按函数返回值是否为真进行筛选。
  • 2.filter_by_folder(include=None, exclude=None): 包含include指定的文件夹,排除exclude指定的文件夹。
  • 3.filter_by_rand(p, seed): 按照一定的比例p筛选数据。
2. 将数据分划为trainvalid

ItemList类提供了若干个用于分划数据集的方法,返回的是一个包含trainvalid两个ItemListItemLists实例。

split_by_rand_pct(valid_pct:float=0.2, seed:int=None)# 按valid_pct指定的比例进行分划。
split_subsets(train_size:float, valid_size:float, seed=None)# 按train_size、valid_size指定的比例进行抽取
split_by_files(valid_names:ItemList) → ItemLists# 按valid_names指定的文件名进行分划
split_by_fname_file(fname:PathOrStr, path:PathOrStr=None)# 按fname文件存储的文件名进行分划
split_by_folder(train:str='train', valid:str='valid')# 按照文件夹的名称进行分划
split_by_idx(valid_idx:Collection[int])# 按照valid_idx指定的索引进行分划
split_by_idxs(train_idx, valid_idx)# 同时指定train和valid两个索引列表
split_by_list(train, valid)# 同时指定train和valid的文件列表
split_by_valid_func(func:Callable)# 传入文件名,按照返回值的真假进行分划(取真时为validation数据集)
split_from_df(col:IntsOrStrs=2)# 使用inner_df的第col列进行分划(取真时为validation数据集)# 这一函数要求ItemList是由from_df()或者from_csv()构建的
3. 生成数据标签

ItemLists实例调用label_from_*函数完成;其返回的是LabelLists实例,该实例由两个LabelList组成;而LabelList类继承自PyTorchDataset类,整合了数据x和标签y(二者均是ItemList类或其子类),并实现了Dataset类所必需的__len__()__getitem__()函数。

label_from_df(cols:IntsOrStrs=1, label_cls:Callable=None, **kwargs)# 由inner_df的第cols列提供标签,cols可以为多列# 这一函数要求ItemList是由from_df()或者from_csv()构建的
label_from_folder(label_cls:Callable=None, **kwargs)# 由文件路径的最后一层的名称指定标签
label_from_func(func:Callable, label_cls:Callable=None, **kwargs)# 由函数提供标签,该函数接受文件名作为参数,返回一个类别
label_from_re(pat:str, full_path:bool=False, label_cls:Callable=None, **kwargs)# 由正则表达式提供标签。
4. 生成模型所需的数据包

LabelLists实例调用databunch()生成,实际上是通过调用DataBunch.create()函数完成的。

二、针对视觉任务的调整 (文档链接)

1. 使用ImageList替换ItemList

ImageListItemList的子类,其主要覆写了对列表进行索引时所需用到的get()函数,即在索引时使用open_image()打开图像。另外,ImageList还覆写了from_df()from_csv()函数,其中会将数据路径与dfcsv中的相对路径拼合成绝对路径。

2. 使用ImageDataBunch替换DataBunch

这一设置其实也是在ImageList中进行的。在ItemList类中,用一个类变量_bunch记录数据包的类DataBunch;而在ImageList中,这一变量的值变为了ImageDataBunchImageDataBunchDataBunch的子类。

三、其他需要注意的地方

1. ItemLists的属性

查询ItemLists的实例属性时,调用的是__getattr__()函数。首先查看self.train的相应属性,若查到的属性不是Callable的,则直接返回;否则,则在self.trainself.valid上分别调用相应属性,并将结果替换self.trainself.valid

事实上,如LabelInstance.classes也是类似的逻辑。

2. 数据预处理

预设的预处理操作是通过ItemList的类属性_processor来设置的。如果在创建ItemList时,指定了实例变量processor,则将覆盖_processor的作用。预处理操作均应为PreProcessor类的实例,该实例主要包含用于处理单条记录的process_one()函数和用于列表处理的process()函数;process()函数将使用预处理后的结果替换掉传入的数据列表。

如对分类问题,在由ItemLists实例调用label_from_*方法(由前所述,该调用实际会在ItemListsInstance.trainItemListsInstance.valid两个ItemList实例上分别调用label_from_*方法)时,会首先判断标签类型为CategoryList,该类继自CategoryListBase;而CategoryListBase继承自ItemList,并且类成员变量_processorCategoryProcessor(ItemList类的_processorNone)。这样,由label_from_*方法生成的LabelList对象的x将为ItemList类,对其进行的预处理将为空;而其y将为CategoryList类,对其进行的预处理将为CategoryProcessor,即将标签中的不同值当做标签集合,并提供标签字面值与索引的映射字典。

四、示例

仍使用fastai.URLs.MNIST_SAMPLEi数据,假设数据所在文件夹为path,则:

data = (ImageList.from_folder(path) # 数据文件的路径.split_by_folder()      # 按比例分割训练集和验证集.label_from_folder()    # 指定类别标签.transform(size=32)     # 对图像进行变换.databunch(bs=128).normalize(imagenet_stats) # 数据归一化
)

假设要从每张图片中预测三个浮点值,数据准备如下:

图 2. 从图片中预测浮点值
则数据包的构造流程为:
il = (ImageList.from_csv(path=path, csv_name="labels_float.csv").split_by_idx(range(20)).label_from_df(cols=[1,2,3], label_cls=FloatList).transform(size=32).databunch(bs=128).normalize(imagenet_stats)
)

其中在做label_from_df()调用时,需要指明Label ClassFloatList类型,否则会默认设置为MultiCategoryList类。

注意,其中均未设置对数据应做哪些变换,这一部分内容将在下一篇博文中介绍。

这篇关于第三篇 FastAI数据构造API的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/750666

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

一分钟带你上手Python调用DeepSeek的API

《一分钟带你上手Python调用DeepSeek的API》最近DeepSeek非常火,作为一枚对前言技术非常关注的程序员来说,自然都想对接DeepSeek的API来体验一把,下面小编就来为大家介绍一下... 目录前言免费体验API-Key申请首次调用API基本概念最小单元推理模型智能体自定义界面总结前言最

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt