FMM 笔记:FMM(colab上执行)【官方案例解读】

2024-02-26 23:44

本文主要是介绍FMM 笔记:FMM(colab上执行)【官方案例解读】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 在colab上运行,所以如何在colab上安装fmm,可见FMM 笔记:在colab上执行FMM-CSDN博客

fmm见:论文笔记:Fast map matching, an algorithm integrating hidden Markov model with precomputation_ubodt(upper bounded origin destination table)-CSDN博客

0 导入库 

from fmm import Network,NetworkGraph,FastMapMatch,FastMapMatchConfig,UBODT

1 加载数据(边的shp文件) 【与st-matching部分一致】

import geopandas as gpd
shp_path = "../data/edges.shp"
gdf = gpd.read_file(shp_path)
gdf

2  提取路网信息 【与st-matching部分一致】

network = Network("../data/edges.shp")
#通过Network类加载路网数据(edges.shp)print("Nodes {} edges {}".format(network.get_node_count(),network.get_edge_count()))
#Nodes 17 edges 30graph = NetworkGraph(network)
#使用NetworkGraph类基于这个网络创建一个图形(Graph)对象

3  创建UBODT 【FMM独有】(如有ubodt文件,这一步略去)

FMM独特部分,上界起点-终点表(UBODT),详细内容,见论文笔记:Fast map matching, an algorithm integrating hidden Markov model with precomputation_ubodt(upper bounded origin destination table)-CSDN博客

from fmm import UBODTGenAlgorithmubodt_gen = UBODTGenAlgorithm(network,graph)
#创建UBODT生成算法的实例status = ubodt_gen.generate_ubodt("../data/ubodt.txt", 4, binary=False,use_omp=True)
'''
生成UBODT文件,分别设置了
--输出文件路径
--delta (float or int): 搜索半径的阈值,用于限制生成UBODT时考虑的最短路径的最大长度
--binary (bool, optional): 指示输出文件格式是否为二进制。默认为False,表示输出为文本格式。
--use_omp (bool, optional): 指示是否使用OpenMP来并行化UBODT的生成过程。默认为True,允许使用多个CPU核心并行计算,以加速UBODT的生成。print(status)
'''
Status: success
Time takes 0.004 seconds
'''

 ubodt文件内容如下:

pd.read_csv("../data/ubodt.txt",delimiter=';')

 

4 读取ubodt文件

ubodt = UBODT.read_ubodt_csv("../data/ubodt.txt")
ubodt
#<fmm.UBODT; proxy of <Swig Object of type 'std::shared_ptr< FMM::MM::UBODT > *' at 0x7f9f5fe0fea0> >

5  创建FMM模型

传入参数相比于st-matching,多一个ubodt

model = FastMapMatch(network,graph,ubodt)

5.1 定义st-matching模型的配置

k = 4
#candidate 数量
gps_error = 0.5
#gps定位误差
radius = 0.4
#搜索半径fmm_config = FastMapMatchConfig(k,radius,gps_error)

6 单条数据的地图匹配

6.0 输入数据

输入数据是wkt格式的数据

地理笔记:WKT,WKB,GeoJSON-CSDN博客

wkt ='LINESTRING(0.200812146892656 2.14088983050848,1.44262005649717 2.14879943502825,3.06408898305084 2.16066384180791,3.06408898305084 2.7103813559322,3.70872175141242 2.97930790960452,4.11606638418078 2.62337570621469)'

6.1 进行地图匹配

result = model.match_wkt(wkt,fmm_config)rint("Matched path: ", list(result.cpath))
print("Matched edge for each point: ", list(result.opath))
print("Matched edge index ",list(result.indices))
print("Matched geometry: ",result.mgeom.export_wkt())
print("Matched point ", result.pgeom.export_wkt())
'''
Matched path:  [8, 11, 13, 18, 20, 24]
Matched edge for each point:  [8, 11, 18, 18, 20, 24]
Matched edge index  [0, 1, 3, 3, 4, 5]
Matched geometry:  LINESTRING(0.20081215 2,1 2,2 2,3 2,3 3,4 3,4 2.6233757)
Matched point  LINESTRING(0.20081215 2,1.4426201 2,3 2.1606638,3 2.7103814,3.7087218 3,4 2.6233757)
'''

cpath,opath这些的内容见:FMM 笔记:st-matching(colab上执行)【官方案例解读】-CSDN博客

6.2 输出每个点的匹配结果

candidates = []
for c in result.candidates:candidates.append((c.edge_id,c.source,c.target,c.error,c.length,c.offset,c.spdist,c.ep,c.tp))import pandas as pd
df = pd.DataFrame(candidates,columns=["eid","source","target","error","length","offset","spdist","ep","tp"])
df.head()

DataFrame的列含义如下:

  • eid:边的ID。
  • source:边的起点节点ID。
  • target:边的终点节点ID。
  • error:候选点的误差值。
  • length:边的长度。
  • offset:GPS点在边上的偏移量。
  • spdist:GPS点到边的最短距离。
  • eptp:分别表示匹配点在边上的起始和终止位置,作为归一化的比例值。

7 将一个文件中的轨迹分别进行匹配,并输出到另一个文件中

from fmm import GPSConfig,ResultConfig

7.1 输入文件设置【和st-matching 一致】

输入文件长这样:

gpd.read_file("../data/trips.csv")

# Define input data configuration
input_config = GPSConfig()
input_config.file = "../data/trips.csv"
input_config.id = "id"print(input_config.to_string())
'''
[40]
0 秒
print(input_config.to_string())
gps file : ../data/trips.csv
id column : id
geom column : geom
timestamp column : timestamp
x column : x
y column : y
GPS point : false
'''

7.2 输出文件信息【和st-matching一样】

result_config = ResultConfig()
result_config.file = "../data/mr.txt"
result_config.output_config.write_opath = True
#结果文件将包含匹配的路径信息(每个单独点匹配到的边的信息)
print(result_config.to_string())
'''
Result file : ../data/mr.txt
Output fields: opath cpath mgeom 
'''

7.3 路网匹配

status = model.match_gps_file(input_config, result_config, fmm_config)print(status)
'''
Status: success
Time takes 0.003 seconds
Total points 17 matched 17
Map match speed 5666.67 points/s 
'''

7.4  查看匹配结果

import pandas as pd
pd.read_csv("../data/mr.txt",delimiter=';')

这篇关于FMM 笔记:FMM(colab上执行)【官方案例解读】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/750541

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Mybatis官方生成器的使用方式

《Mybatis官方生成器的使用方式》本文详细介绍了MyBatisGenerator(MBG)的使用方法,通过实际代码示例展示了如何配置Maven插件来自动化生成MyBatis项目所需的实体类、Map... 目录1. MyBATis Generator 简介2. MyBatis Generator 的功能3

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

如何使用 Bash 脚本中的time命令来统计命令执行时间(中英双语)

《如何使用Bash脚本中的time命令来统计命令执行时间(中英双语)》本文介绍了如何在Bash脚本中使用`time`命令来测量命令执行时间,包括`real`、`user`和`sys`三个时间指标,... 使用 Bash 脚本中的 time 命令来统计命令执行时间在日常的开发和运维过程中,性能监控和优化是不

C#如何优雅地取消进程的执行之Cancellation详解

《C#如何优雅地取消进程的执行之Cancellation详解》本文介绍了.NET框架中的取消协作模型,包括CancellationToken的使用、取消请求的发送和接收、以及如何处理取消事件... 目录概述与取消线程相关的类型代码举例操作取消vs对象取消监听并响应取消请求轮询监听通过回调注册进行监听使用Wa

PHP执行php.exe -v命令报错的解决方案

《PHP执行php.exe-v命令报错的解决方案》:本文主要介绍PHP执行php.exe-v命令报错的解决方案,文中通过图文讲解的非常详细,对大家的学习或工作有一定的帮助,需要的朋友可以参考下... 目录执行phpandroid.exe -v命令报错解决方案执行php.exe -v命令报错-PHP War