【python】多维list(非对齐数据)填充,可视化,colorbar操作

2024-02-26 19:10

本文主要是介绍【python】多维list(非对齐数据)填充,可视化,colorbar操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

输入数据格式:数据填充为对齐矩阵,可视化

0.402202 0.402431 0.402842 
0.574573 0.574753 0.575154 0.563835 
0.609595 0.609775 0.610174 0.598922 
0.853798 0.853812 0.854153 0.845998 0.653147 
0.869287 0.869285 0.86962 0.861777 0.673182 
0.890961 0.890945 0.891273 0.883723 0.699076 

在这里插入图片描述

# import necessary module
from ctypes import sizeof
from mpl_toolkits.mplot3d import axes3d
import numpy as np
from pylab import *
import cmath
import math
import matplotlib.pyplot as pltdef transpose(matrix):new_matrix = []for i in range(len(matrix[0])):matrix1 = []for j in range(len(matrix)):matrix1.append(matrix[j][i])new_matrix.append(matrix1)return new_matrixfilename ='/home/sun/nolovr/svopro/doc/overlap_kfs_distance_bet_kf_plat.txt'  # 给定文件路径
# filename ='/home/sun/nolovr/svopro/doc/temp.txt'  # 给定文件路径data_list = []
f=open(filename,'r')
lines_get=f.readlines()  #读取整个文件所有行,保存在 list 列表中
max_col =0
for line in lines_get:data_list.append(line)length = len(line.split(' '))-1if(length>max_col):max_col =lengthmax_row = len(data_list)
print(max_col)
print('max_row =',max_row)
print("----------------------------")distance_data = []
lines = '' # 用于将存储行的变量提前声明为string格式,避免编译器自动声明时可能由于第一行的特殊情况造成的数据类型错误
with open(filename, 'r') as file_to_read: # 打开文件,将其值赋予file_to_readwhile True:lines = file_to_read.readline() # 整行读取数据length = len(lines.split(' '))-1if(length>max_col):max_col =lengthif not lines: # 若该行为空break # 喀嚓else:this_lines=lines.split() # 根据空格对字符串进行切割,由于切割后的数据类型有所改变(str-array)建议新建变量进行存储# for i in this_lines:#     print(i)length_this_lines = len(this_lines)num_this_line = []for loop_this_line in range(length_this_lines):# print(double(this_lines[loop_this_line]))num_this_line.append(double(this_lines[loop_this_line]))# print(num_this_line)if length_this_lines<max_col:leak_pos_num = max_col - length_this_linesfor loop_num in range(leak_pos_num):num_this_line.append(0)# print(num_this_line)# print(type(this_lines))distance_data.append(num_this_line)# for this_line in num_this_line: # 遍历数组并输出# print(double(this_line)) # 直接在这里写处理代码就可以了,因为切割后的数组是按照顺序排列的,并且自动剔除了换行符# 但仍需注意,调试后发现切割后进行遍历的this_line变量为str格式,可能需要强制类型转换才能作为数字进行计算,所以这段代码同样支持英语汉语的分割输出# line_data = array(double(this_line))# print("----------------------------")# print(line_data)
# print("\nFinsh!")
# print(distance_data)
print("----------------------------")
# print(distance_data)
distance_rot_270 = list(map(list, zip(*distance_data)))[::-1]
# print(distance_rot_270)## *****************************************************************
### one pic show all data ,but is too small 
fig = plt.figure(figsize=[6.4*5, 4.8*5], dpi=100)rect1 = [0.03, 0.55, 0.95, 0.35]
ax1 = plt.axes(rect1)plt.imshow(distance_rot_270)
# plt.subplot(1, 2, 4)
plt.xlim=[0,max_col]
plt.ylim=[0,max_row]print("-------------color bar---------------")
# x = np.linspace(0, 5, 100) 
N = 40
# colormap 
cmap = plt.get_cmap('jet', N)# Normalizer 
norm = mpl.colors.Normalize(vmin=0, vmax=1) # creating ScalarMappable 
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm) 
sm.set_array([]) plt.colorbar(sm, ticks=np.linspace(0, 40, N),orientation="horizontal",label="difference color means disfferent distance") 
print("----------------------------")plt.savefig('/home/sun/nolovr/svopro/doc/cf_distance_compare_closekf_inplat.png', bbox_inches='tight') #transparent=Trueplt.show()
plt.close()## *****************************************************************print('*****************************************************************')# part1_distance = distance_data[0:int(max_row/4)]
# # part1_distance = distance_rot_270[0:int(max_row/4)]
# part2_distance = distance_data[int(max_row/4):int(max_row/2)]
# part3_distance = distance_data[int(max_row/2):int(max_row/4*3)]
# part4_distance = distance_data[int(max_row/4*3):max_row]
# print(len(part1_distance))
# print(size(part1_distance))
# print("----------------------------")
# print(len(part2_distance))
# print(size(part2_distance))
# print("----------------------------")
# print(len(part3_distance))
# print(size(part3_distance))
# print("----------------------------")
# print(len(part4_distance))
# print(size(double(part4_distance)))# plt.figure(figsize=[6.4*2, 4.8*2], dpi=100)
# #part 1:
# plt.subplot(2, 2, 1)
# plt.plot(part1_distance)
# plt.title("part 1")# #part 2:
# plt.subplot(2, 2, 2)
# plt.plot(part2_distance)
# plt.title("part 2")# #part 3:
# plt.subplot(2, 2, 3)
# plt.plot(part3_distance)
# plt.title("part 3")# #part 4:
# plt.subplot(2, 2, 4)
# plt.plot(part4_distance)
# plt.title("part 4")# plt.suptitle("distance update")
# plt.show()## *****************************************************************# plt.xlim(0,max_col)
# plt.ylim(0,max_row)
# for x in range(max_row):
#     for y in range(max_col):
#         if distance_data[x][y] ==0:
#             plt.scatter(y, x,edgecolors='b',c='b',s=40,marker ='o' )
#         elif distance_data[x][y] > 0.1:
#             plt.scatter(y, x,edgecolors='r',c='r',s=40,marker ='o')
#         else:
#             plt.scatter(y, x,edgecolors='g',c='g',s=40,marker ='o')
#         #     print((distance_data[x][y] ))# plt.show()

这篇关于【python】多维list(非对齐数据)填充,可视化,colorbar操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/749860

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及