细粒度目标检测问题剖析

2024-02-26 09:12

本文主要是介绍细粒度目标检测问题剖析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题剖析

相对于一般目标检测任务,细粒度目标更容易出现类内差异大、类间差异小等现象。

所谓细粒度目标识别,是指在目标检测的基础上,识别出目标的具体型号与类别,例如不只识别出飞机目标,还能识别出飞机型号。粗粒度是分辨猫还是狗,而细粒度是分辨狗的种类,比如这个狗是杜宾犬还是金毛。

基于深度学习的细粒度目标检测算法研究

LionRoarRoar/Awesome-Fine-grained-Visual-Classification: Awesome Fine-grained Visual Classification (github.com)

Awesome Fine-Grained Image Analysis – Papers, Codes and Datasets (weixiushen.com)

目标识别算法选择

对于细粒度物体识别,通常来说,R-CNN更适合。R-CNN是一种基于区域的卷积神经网络,它在检测和识别物体时能够更好地捕捉物体的细节和特征。相比之下,YOLO更适合于快速的实时物体检测,但在细粒度物体识别上可能不如R-CNN表现出色。

1、yolo

不生成预选框

2、R-CNN

先生成备选框,后分类,修正,识别

3、SSD

4、多模型融合

  1. 将每个模型的预测结果进行融合,可以采用简单的投票机制、加权平均或者更复杂的集成学习方法来融合这些结果。
  2. 调整融合权重:根据实际情况,可能需要对不同模型的预测结果进行加权融合,以提高整体预测性能。

数据集获取

训练集、验证集、测试集

堆数据

1、爬虫

1、多搜索引擎爬取

2、筛选去重

  • 颜色特征提取
  • 纹理特征提取
  • SIFT特征对比

2、数据增强

目的:

执行数据增强,你可以阻止神经网络学习不相关的特征,从根本上提升整体性能。

方法:

有监督:

翻转,旋转,缩放,裁剪,移位;

可能的问题:旋转特定角度出现黑色区域 -> 插值

无监督:
  1. 通过模型学习数据的分布,随机生成与训练数据集分布一致的图片,代表方法GAN。
  2. 通过模型,学习出适合当前任务的数据增强方法,代表方法AutoAugment。

自动数据增强https://github.com/tensorflow/tpu/blob/master/models/official/detection/utils/autoaugment_utils.py

可能出现的问题:

过度拟合 -> 高斯噪声

样本不平衡问题

图片标注

标注工具:labellmg

影响分类识别的因素

可以归结为三个方面:

  1. 第一种因素,就是比较常见的基于图像本身的一些因素,比如光照,形变,尺度,模糊等等。
  2. 第二种因素,就是类内差异太大,比如椅子,桌子,虽然都叫椅子,桌子,可是形态各异。
  3. 第三种因素,就是类间差异太小,最常见的就是细粒度分类。

缩小类内距离增大类间距离策略——摘自知乎(作者:新想)_多分类损失函数优化 类间距离大-CSDN博客

如何保持分类模型具有类内聚敛、类间分离的特性? - 简书 (jianshu.com)

  1. triplet loss
  2. L-softmax
  3. A-softmax
  4. Am-softmax
  5. centerloss
  6. LDA

这篇关于细粒度目标检测问题剖析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/748357

相关文章

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明