pytorch自定义数据集分类resnet18

2024-02-26 05:44

本文主要是介绍pytorch自定义数据集分类resnet18,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

# 文件结构为:
# |--- data
#  |--- dog
#     |--- dog1_1.jpg
#     |--- dog1_2.jpg
#  |--- cat
#     |--- cat2_1.jpg
#     |--- cat2_2.jpg

 

import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim# 定义数据集的根目录和预处理的转换
data_dir = '../data'  # 数据集的根目录transform = transforms.Compose([transforms.Resize((224, 224)),  # 调整图像大小为 224x224transforms.ToTensor(),  # 转换为张量transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 归一化
])# 创建 ImageFolder 数据集实例
dataset = torchvision.datasets.ImageFolder(root=data_dir, transform=transform)# 划分训练集和测试集
train_size = int(0.8 * len(dataset))
test_size = len(dataset) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size])print(len(train_dataset))
print(len(test_dataset))
# 创建数据加载器
batch_size = 32
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 定义预训练的卷积神经网络模型
model = torchvision.models.resnet18(pretrained=True)  #pretrained=False表示不使用预训练的权重,True表示使用预训练的权重
num_classes = len(dataset.classes) #获取图片的类别数量
model.fc = nn.Linear(model.fc.in_features, num_classes) #提取model.fc.in_features线性层中固定输入的size,
# num_classes分类图片的类型['cat','dog']# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)# 训练模型
num_epochs = 10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
for epoch in range(num_epochs):model.train() #(训练模式,这句代码主要是对模型中的Droupout层和Normsize(均值方差计算)起作用)running_loss = 0.0for images, labels in train_loader:images = images.to(device) #将图片放到GPU训练labels = labels.to(device) #标签放到GPU训练optimizer.zero_grad() #梯度清零outputs = model(images) #图片输入到模型loss = criterion(outputs, labels) #预测值和真是值之间计算损失loss.backward() #反向传播optimizer.step() #更新参数running_loss += loss.item() #每次损失相加print(f"Epoch {epoch + 1}/{num_epochs}, Loss: {running_loss / len(train_loader):.4f}")# 在测试集上评估模型
model.eval() #训练模式,这句代码主要是对模型中的Droupout层和Normsize(均值方差计算)不加入计算
total_correct = 0
total_samples = 0
with torch.no_grad():for images, labels in test_loader:images = images.to(device)labels = labels.to(device)outputs = model(images)_, predicted = torch.max(outputs, 1)total_samples += labels.size(0)total_correct += (predicted == labels).sum().item()accuracy = total_correct / total_samples
print(f"测试集准确率: {accuracy * 100:.2f}%")
torch.save(model,"model56")# 文件结构为:
# |--- data
# 	|--- dog
# 		|--- dog1_1.jpg
# 		|--- dog1_2.jpg
# 	|--- cat
# 		|--- cat2_1.jpg
# 		|--- cat2_2.jpg# 不同的模型构建细节
# AlexNet 模型结构
# torchvision.models.alexnet(pretrained=False, ** kwargs)
# pretrained (bool) = True, 返回在ImageNet上训练好的模型。
#
# 构建一个resnet18模型
# torchvision.models.resnet18(pretrained=False, ** kwargs)
# pretrained (bool) = True, 返回在ImageNet上训练好的模型。
#
# 构建一个ResNet-34 模型.
# torchvision.models.resnet34(pretrained=False, ** kwargs)
# Parameters: pretrained (bool) = True, 返回在ImageNet上训练好的模型。
#
# 构建一个ResNet-50模型
# torchvision.models.resnet50(pretrained=False, ** kwargs)
# pretrained (bool) = True, 返回在ImageNet上训练好的模型。
#
# 构建一个ResNet-101模型
# torchvision.models.resnet101(pretrained=False, ** kwargs)
# pretrained (bool) = True, 返回在ImageNet上训练好的模型。
#
# 构建一个ResNet-152模型
# torchvision.models.resnet152(pretrained=False, ** kwargs)
# pretrained (bool) = True, 返回在ImageNet上训练好的模型。
#
# VGG 11层模型(配置“A”)
# torchvision.models.vgg11(pretrained=False, ** kwargs)
# pretrained (bool) = True, 返回在ImageNet上训练好的模型。
#
# 批量归一化的VGG 11层模型(配置“A”)
# torchvision.models.vgg11_bn(** kwargs)
#
# 构建一个VGG 13模型
# torchvision.models.vgg13(pretrained=False, ** kwargs)
# pretrained (bool) = True, 返回在ImageNet上训练好的模型。
#
# 批量归一化的VGG 13层模型(配置“B”)
# torchvision.models.vgg13_bn(** kwargs)
#
# VGG 16层模型(配置“D”)
# torchvision.models.vgg16(pretrained=False, ** kwargs)
# Parameters: pretrained (bool) = True, returns a model pre-trained on ImageNet
#
# 批量归一化的VGG 16层模型(配置“D”)
# torchvision.models.vgg16_bn(** kwargs)
#
# VGG 19层模型(配置“E”)
# torchvision.models.vgg19(pretrained=False, ** kwargs)
# pretrained (bool) = True, 返回在ImageNet上训练好的模型。
#
# 批量归一化的VGG 16层模型(配置“E”)
# torchvision.models.vgg19_bn(** kwargs)

predict.py保存模型之后预测:

from torchvision import datasets, transforms
import numpy as np
from PIL import Image
import torch
import torch.nn.functional as F
from cov01 import Modelclasses = ('cat','dog')if __name__ == '__main__':device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')model = torch.load('model56')  # 加载模型model = model.to(device)model.eval()  # 把模型转为test模式img = Image.open("../dog.jpg")trans = transforms.Compose([transforms.CenterCrop(32),transforms.ToTensor(),# transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])img = trans(img)img = img.to(device)img = img.unsqueeze(0)  # 图片扩展多一维,因为输入到保存的模型中是4维的[batch_size,通道,长,宽],而普通图片只有三维,[通道,长,宽]# 扩展后,为[1,1,28,28]output = model(img)prob = F.softmax(output, dim=1)  # prob是10个分类的概率print(prob)value, predicted = torch.max(output.data, 1) #按照维度返回最大概率dim = 0 表示按列求最大值,并返回最大值的索引,dim = 1 表示按行求最大值,并返回最大值的索引print(predicted.item())print(value)pred_class = classes[predicted.item()]print(pred_class)

这篇关于pytorch自定义数据集分类resnet18的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/747850

相关文章

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

用Pytho解决分类问题_DBSCAN聚类算法模板

一:DBSCAN聚类算法的介绍 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,DBSCAN算法的核心思想是将具有足够高密度的区域划分为簇,并能够在具有噪声的空间数据库中发现任意形状的簇。 DBSCAN算法的主要特点包括: 1. 基于密度的聚类:DBSCAN算法通过识别被低密

PMP–一、二、三模–分类–14.敏捷–技巧–看板面板与燃尽图燃起图

文章目录 技巧一模14.敏捷--方法--看板(类似卡片)1、 [单选] 根据项目的特点,项目经理建议选择一种敏捷方法,该方法限制团队成员在任何给定时间执行的任务数。此方法还允许团队提高工作过程中问题和瓶颈的可见性。项目经理建议采用以下哪种方法? 易错14.敏捷--精益、敏捷、看板(类似卡片)--敏捷、精益和看板方法共同的重点在于交付价值、尊重人、减少浪费、透明化、适应变更以及持续改善等方面。

react笔记 8-16 JSX语法 定义数据 数据绑定

1、jsx语法 和vue一样  只能有一个根标签 一行代码写法 return <div>hello world</div> 多行代码返回必须加括号 return (<div><div>hello world</div><div>aaaaaaa</div></div>) 2、定义数据 数据绑定 constructor(){super()this.state={na

【python计算机视觉编程——8.图像内容分类】

python计算机视觉编程——8.图像内容分类 8.图像内容分类8.1 K邻近分类法(KNN)8.1.1 一个简单的二维示例8.1.2 用稠密SIFT作为图像特征8.1.3 图像分类:手势识别 8.2贝叶斯分类器用PCA降维 8.3 支持向量机8.3.2 再论手势识别 8.4 光学字符识别8.4.2 选取特征8.4.3 多类支持向量机8.4.4 提取单元格并识别字符8.4.5 图像校正

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 (debug笔记)

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 ##一、 缘由及解决方法 把这个pytorch-ddpg|github搬到jupyter notebook上运行时,出现错误Nn criterions don’t compute the gradient w.r.t. targets error。注:我用

PMP–一、二、三模–分类–14.敏捷–技巧–原型MVP

文章目录 技巧一模14.敏捷--原型法--项目生命周期--迭代型生命周期,通过连续的原型或概念验证来改进产品或成果。每个新的原型都能带来新的干系人新的反馈和团队见解。题目中明确提到需要反馈,因此原型法比较好用。23、 [单选] 一个敏捷团队的任务是开发一款机器人。项目经理希望确保在机器人被实际建造之前,团队能够收到关于需求的早期反馈并相应地调整设计。项目经理应该使用以下哪一项来实现这个目标?

基于深度学习 卷积神经网络resnext50的中医舌苔分类系统

项目概述 本项目旨在通过深度学习技术,特别是利用卷积神经网络(Convolutional Neural Networks, CNNs)中的ResNeXt50架构,实现对中医舌象图像的自动分类。该系统不仅能够识别不同的舌苔类型,还能够在PyQt5框架下提供一个直观的图形用户界面(GUI),使得医生或患者能够方便地上传舌象照片并获取分析结果。 技术栈 深度学习框架:采用PyTorch或其他