pytorch自定义数据集分类resnet18

2024-02-26 05:44

本文主要是介绍pytorch自定义数据集分类resnet18,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

# 文件结构为:
# |--- data
#  |--- dog
#     |--- dog1_1.jpg
#     |--- dog1_2.jpg
#  |--- cat
#     |--- cat2_1.jpg
#     |--- cat2_2.jpg

 

import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim# 定义数据集的根目录和预处理的转换
data_dir = '../data'  # 数据集的根目录transform = transforms.Compose([transforms.Resize((224, 224)),  # 调整图像大小为 224x224transforms.ToTensor(),  # 转换为张量transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 归一化
])# 创建 ImageFolder 数据集实例
dataset = torchvision.datasets.ImageFolder(root=data_dir, transform=transform)# 划分训练集和测试集
train_size = int(0.8 * len(dataset))
test_size = len(dataset) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size])print(len(train_dataset))
print(len(test_dataset))
# 创建数据加载器
batch_size = 32
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 定义预训练的卷积神经网络模型
model = torchvision.models.resnet18(pretrained=True)  #pretrained=False表示不使用预训练的权重,True表示使用预训练的权重
num_classes = len(dataset.classes) #获取图片的类别数量
model.fc = nn.Linear(model.fc.in_features, num_classes) #提取model.fc.in_features线性层中固定输入的size,
# num_classes分类图片的类型['cat','dog']# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)# 训练模型
num_epochs = 10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
for epoch in range(num_epochs):model.train() #(训练模式,这句代码主要是对模型中的Droupout层和Normsize(均值方差计算)起作用)running_loss = 0.0for images, labels in train_loader:images = images.to(device) #将图片放到GPU训练labels = labels.to(device) #标签放到GPU训练optimizer.zero_grad() #梯度清零outputs = model(images) #图片输入到模型loss = criterion(outputs, labels) #预测值和真是值之间计算损失loss.backward() #反向传播optimizer.step() #更新参数running_loss += loss.item() #每次损失相加print(f"Epoch {epoch + 1}/{num_epochs}, Loss: {running_loss / len(train_loader):.4f}")# 在测试集上评估模型
model.eval() #训练模式,这句代码主要是对模型中的Droupout层和Normsize(均值方差计算)不加入计算
total_correct = 0
total_samples = 0
with torch.no_grad():for images, labels in test_loader:images = images.to(device)labels = labels.to(device)outputs = model(images)_, predicted = torch.max(outputs, 1)total_samples += labels.size(0)total_correct += (predicted == labels).sum().item()accuracy = total_correct / total_samples
print(f"测试集准确率: {accuracy * 100:.2f}%")
torch.save(model,"model56")# 文件结构为:
# |--- data
# 	|--- dog
# 		|--- dog1_1.jpg
# 		|--- dog1_2.jpg
# 	|--- cat
# 		|--- cat2_1.jpg
# 		|--- cat2_2.jpg# 不同的模型构建细节
# AlexNet 模型结构
# torchvision.models.alexnet(pretrained=False, ** kwargs)
# pretrained (bool) = True, 返回在ImageNet上训练好的模型。
#
# 构建一个resnet18模型
# torchvision.models.resnet18(pretrained=False, ** kwargs)
# pretrained (bool) = True, 返回在ImageNet上训练好的模型。
#
# 构建一个ResNet-34 模型.
# torchvision.models.resnet34(pretrained=False, ** kwargs)
# Parameters: pretrained (bool) = True, 返回在ImageNet上训练好的模型。
#
# 构建一个ResNet-50模型
# torchvision.models.resnet50(pretrained=False, ** kwargs)
# pretrained (bool) = True, 返回在ImageNet上训练好的模型。
#
# 构建一个ResNet-101模型
# torchvision.models.resnet101(pretrained=False, ** kwargs)
# pretrained (bool) = True, 返回在ImageNet上训练好的模型。
#
# 构建一个ResNet-152模型
# torchvision.models.resnet152(pretrained=False, ** kwargs)
# pretrained (bool) = True, 返回在ImageNet上训练好的模型。
#
# VGG 11层模型(配置“A”)
# torchvision.models.vgg11(pretrained=False, ** kwargs)
# pretrained (bool) = True, 返回在ImageNet上训练好的模型。
#
# 批量归一化的VGG 11层模型(配置“A”)
# torchvision.models.vgg11_bn(** kwargs)
#
# 构建一个VGG 13模型
# torchvision.models.vgg13(pretrained=False, ** kwargs)
# pretrained (bool) = True, 返回在ImageNet上训练好的模型。
#
# 批量归一化的VGG 13层模型(配置“B”)
# torchvision.models.vgg13_bn(** kwargs)
#
# VGG 16层模型(配置“D”)
# torchvision.models.vgg16(pretrained=False, ** kwargs)
# Parameters: pretrained (bool) = True, returns a model pre-trained on ImageNet
#
# 批量归一化的VGG 16层模型(配置“D”)
# torchvision.models.vgg16_bn(** kwargs)
#
# VGG 19层模型(配置“E”)
# torchvision.models.vgg19(pretrained=False, ** kwargs)
# pretrained (bool) = True, 返回在ImageNet上训练好的模型。
#
# 批量归一化的VGG 16层模型(配置“E”)
# torchvision.models.vgg19_bn(** kwargs)

predict.py保存模型之后预测:

from torchvision import datasets, transforms
import numpy as np
from PIL import Image
import torch
import torch.nn.functional as F
from cov01 import Modelclasses = ('cat','dog')if __name__ == '__main__':device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')model = torch.load('model56')  # 加载模型model = model.to(device)model.eval()  # 把模型转为test模式img = Image.open("../dog.jpg")trans = transforms.Compose([transforms.CenterCrop(32),transforms.ToTensor(),# transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])img = trans(img)img = img.to(device)img = img.unsqueeze(0)  # 图片扩展多一维,因为输入到保存的模型中是4维的[batch_size,通道,长,宽],而普通图片只有三维,[通道,长,宽]# 扩展后,为[1,1,28,28]output = model(img)prob = F.softmax(output, dim=1)  # prob是10个分类的概率print(prob)value, predicted = torch.max(output.data, 1) #按照维度返回最大概率dim = 0 表示按列求最大值,并返回最大值的索引,dim = 1 表示按行求最大值,并返回最大值的索引print(predicted.item())print(value)pred_class = classes[predicted.item()]print(pred_class)

这篇关于pytorch自定义数据集分类resnet18的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/747850

相关文章

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

pytorch+torchvision+python版本对应及环境安装

《pytorch+torchvision+python版本对应及环境安装》本文主要介绍了pytorch+torchvision+python版本对应及环境安装,安装过程中需要注意Numpy版本的降级,... 目录一、版本对应二、安装命令(pip)1. 版本2. 安装全过程3. 命令相关解释参考文章一、版本对

HTML5 data-*自定义数据属性的示例代码

《HTML5data-*自定义数据属性的示例代码》HTML5的自定义数据属性(data-*)提供了一种标准化的方法在HTML元素上存储额外信息,可以通过JavaScript访问、修改和在CSS中使用... 目录引言基本概念使用自定义数据属性1. 在 html 中定义2. 通过 JavaScript 访问3.

从零教你安装pytorch并在pycharm中使用

《从零教你安装pytorch并在pycharm中使用》本文详细介绍了如何使用Anaconda包管理工具创建虚拟环境,并安装CUDA加速平台和PyTorch库,同时在PyCharm中配置和使用PyTor... 目录背景介绍安装Anaconda安装CUDA安装pytorch报错解决——fbgemm.dll连接p

pycharm远程连接服务器运行pytorch的过程详解

《pycharm远程连接服务器运行pytorch的过程详解》:本文主要介绍在Linux环境下使用Anaconda管理不同版本的Python环境,并通过PyCharm远程连接服务器来运行PyTorc... 目录linux部署pytorch背景介绍Anaconda安装Linux安装pytorch虚拟环境安装cu

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。