Octave实现位置式PID算法

2024-02-26 02:20
文章标签 算法 实现 位置 pid octave

本文主要是介绍Octave实现位置式PID算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

由于Matlab不让用,只能“你不让爷用,爷就用别的”,选择开源的Octave以及scilab进行相关领域的学习。Octave的代码和Matlab几乎是100%相同的,只有一些专用的包的函数,可能有些还没来得及写,或者有些差异。但这种差异,新手一般体会不到,老手应该能自己解决了吧。

目录

  • 数字PID控制
    • 位置式PID控制算法
    • 偏微分方程求解
    • 离散系统的数字PID控制仿真

数字PID控制

PID控制器是一种线性控制器,根据给定值 r i r_i ri与实际值构成控制偏差 e r r ( t ) = r i ( t ) − y o ( t ) err(t)=r_i(t)-y_o(t) err(t)=ri(t)yo(t)。其控制规律为

u ( t ) = k p ( e r r ( t ) + 1 T 1 ∫ 0 t e r r ( t ) d t + T D d e r r ( t ) d t ) u(t)=k_p(err(t)+\frac{1}{T_1}\int^{t}_{0}err(t)\text dt+\frac{T_D\text derr(t)}{\text dt}) u(t)=kp(err(t)+T110terr(t)dt+dtTDderr(t))

写成传递函数的形式为

G ( s ) = U ( s ) E ( s ) = k p ( 1 + 1 T 1 s + T D s ) G(s)=\frac{U(s)}{E(s)}=k_p(1+\frac{1}{T_1s}+T_Ds) G(s)=E(s)U(s)=kp(1+T1s1+TDs)

其中, k p k_p kp为比例系数; T 1 T_1 T1为积分时间常数; T D T_D TD为微分时间常数。 U ( s ) U(s) U(s)为输出量的拉氏量, E ( s ) E(s) E(s)为输入量的拉氏量。

PID控制器各校正环节如下:

  1. 比例环节:成比例地反应控制系统的偏差信号 e r r ( t ) err(t) err(t),偏差一旦产生,控制器立即产生控制作用,从而减少偏差。
  2. 积分环节:用于消除静差,提高系统的无差度。积分作用的强弱与积分时间常数 T 1 T_1 T1成负相关。
  3. 微分环节:反应偏差信号的变化趋势(变化速率),并能在偏差信号变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。

位置式PID控制算法

以一系列的采样时刻点 k T kT kT代表连续时间 t t t,以举行法数值积分代替积分,以一阶后向差分近似代替微分,即

{ t ≈ k T , k = 0 , 1 , 2... ∫ 0 1 e r r ( t ) d t ≈ T ∑ j = 0 k e r r ( j T ) = T ∑ j = 0 k e r r j d e r r ( t ) d t ≈ e r r ( k T ) − e r r ( ( k − 1 ) T ) T = e r r k − e r r k − 1 T \left\{\begin{aligned} &t\approx kT, k=0,1,2...\\ &\int^1_0err(t)\text dt\approx T\sum^k_{j=0}err(jT)=T\sum^k_{j=0}err_j\\ &\frac{\text derr(t)}{\text dt}\approx\frac{err(kT)-err((k-1)T)}{T}=\frac{err_k-err_{k-1}}{T} \end{aligned}\right. tkT,k=0,1,2...01err(t)dtTj=0kerr(jT)=Tj=0kerrjdtderr(t)Terr(kT)err((k1)T)=Terrkerrk1

可得离散PID表达式

u ( k ) = k p ( e r r k + T T 1 ∑ j = 0 k e r r j + T D T ( e r r k − e r r k − 1 ) ) = k p e r r k + k I ∑ j = = 0 k e r r j T + k d e r r k − e r r k − 1 T \begin{aligned} u(k)=&k_p(err_k+\frac{T}{T_1}\sum^k_{j=0}err_j+\frac{T_D}{T}(err_k-err_{k-1}))\\ =&k_perr_k+k_I\sum^k_{j==0}err_jT+k_d\frac{err_k-err_{k-1}}{T} \end{aligned} u(k)==kp(errk+T1Tj=0kerrj+TTD(errkerrk1))kperrk+kIj==0kerrjT+kdTerrkerrk1

其中, k I = k p T 1 , k d = k p T D k_I=\frac{k_p}{T_1},k_d=k_pT_D kI=T1kp,kd=kpTD T T T为采样周期, k k k为采样序号, k = 1 , 2 , . . . k=1,2,... k=1,2,...。其控制系统为

在这里插入图片描述

偏微分方程求解

设被控对象为电机模型传递函数

G ( s ) = 1 J s 2 + B s , J = 0.0067 , B = 0.10 G(s)=\frac{1}{Js^2+Bs},J=0.0067,B=0.10 G(s)=Js2+Bs1,J=0.0067,B=0.10

则我们可以通过Octave通过ODE45的方法来求解方程,输入信号为 r i n ( k ) = 0.50 sin ⁡ ( 2 π t ) r_{in}(k)=0.50\sin(2\pi t) rin(k)=0.50sin(2πt),采用PID控制方法设计控制器,其中 k p = 20.0 , k d = 0.50 k_p=20.0,k_d=0.50 kp=20.0,kd=0.50

其中,ODE45的调用方法为

[t,x]=ode45(func,tspan,x0,op,para)

其返回值t是一个列向量,x是一个矩阵;参数func为待处理函数或其路径,tspan=[t0 tf]为微分方程组的积分区间,

代码为

ts = 0.001; %Sampling time
xk = zeros(2,1);
e1 = 0; u1 = 0; %初始化误差time = ts:ts:2000*ts
rin = 0.5*sin(1*2*pi*time);
for k = 1:1:2000para = u1;tSpan = [0 ts];[tt, xx] = ode45("test1_func", tSpan, xk, [], para);xk = xx(length(xx),:);yout(k) = xk(1);e(k) = rin(k) - yout(k);  %误差de(k) = (e(k)-e1)/ts;     %误差的一阶导数u(k) = 20.0*e(k)+0.5*de(k);u(k) = min(u(k),10.0);    %限制u(k)所在区间为[-10,10]u(k) = max(u(k),-10.0);u1 = u(k);e1 = e(k);
endsubplot(1,2,1)
plot(time, rin, 'r', time ,yout, 'b');
xlabel('time(s)'), ylabel('rin,yout');subplot(1,2,2)
plot(time, rin-yout, 'r');
xlabel('time(s)'), ylabel('error');

函数文件为

% test1_func.m
function dy=PlantModel(t,y,flag,para)u = para;J = 0.0067;B = 0.1;dy = zeros(2,1);dy(1) = y(2);dy(2) = -(B/J)*y(2)+(1/J)*u;

得到其结果为

在这里插入图片描述
此外,可以通过XCOS进行仿真,被控对象为三阶传递函数,采用XCOS与脚本结合的方式。主程序由XCOS实现,控制由scilab实现。

离散系统的数字PID控制仿真

控制对象为

G ( S ) = 523500 s 3 + 87.35 s 2 + 10470 s G(S)=\frac{523500}{s^3+87.35s^2+10470s} G(S)=s3+87.35s2+10470s523500

采样时间为1ms,采用z变换进行离散化,经过z变换后的离散化对象为

y o u t = − d e n ( 2 ) y o u t ( k − 1 ) − d e n ( 3 ) y o u t ( k − 2 ) − d e n ( 4 ) y o u t ( k − 3 ) + n u m ( 2 ) u ( k − 1 ) + n u m ( 3 ) u ( k − 2 ) + n u m ( 1 ) u ( k − 3 ) \begin{aligned} y_{out}=&-den(2)y_{out}(k-1)-den(3)y_{out}(k-2)-den(4)y_{out}(k-3)\\ &+num(2)u(k-1)+num(3)u(k-2)+num(1)u(k-3) \end{aligned} yout=den(2)yout(k1)den(3)yout(k2)den(4)yout(k3)+num(2)u(k1)+num(3)u(k2)+num(1)u(k3)

其Octave控制代码为

ts = 0.001; %采样时间
N = 1000;    %采样个数pkg load control    %载入control包,内含tf函数
pkg load tisean     %内含c2d函数sys = tf(2.235e5,[1,87.35,1.047e4,0]); 
dsys = c2d(sys,ts,'z'); %z变换
[num,den] = tfdata(dsys, 'v');titles = ["step signal";"square signal";"sin signal"]for s = 1:3
%参数初始化
u = zeros(1,3);y = zeros(1,3);x = zeros(1,3);
err = 0;time = ts:ts:ts*N;
rin = ones(1,N);
PDI = [2 0.001 0.001];          %表示P,D,I的分量
if s==2rin = sign(sin(2*2*pi*time)); %方波信号
elseif s==3rin = 0.5*sin(2*2*pi*time);   %正弦信号
endiffor k = 1:1:Nyout(k) = -sum(den(2:4).*y)+sum(num.*u);error(k) = rin(k)-yout(k);u(2:3) = u(1:2);  u(1) = sum(PDI.*x);  %PID 控制u(1) = sort([u(1),10,-10])(2)   %区间限制y = [yout(k) y(1:2)];x(1) = error(k);x(2) = (error(k)-err)/ts;x(3) = x(3) + error(k)*ts;err = error(k);
endsubplot(230+s)
plot(time, rin, 'b', time, yout, 'r')
xlabel('time(s)'), ylabel('rin, rout')
title(titles(s,:))subplot(233+s)
plot(time,error)
xlabel('time(s)'),ylabel('error')
end

在这里插入图片描述
这种PID控制算法的缺点是,每次输出均与过去的状态有关,故需要对误差量进行累加,如果位置传感器出现故障, u ( k ) u(k) u(k)可能会出现大幅度变化,从而引起执行机构位置的大幅度变化,从而产生事故。为避免这种情况发生,可采用增量式PID控制算法。

这篇关于Octave实现位置式PID算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/747441

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo