RLWE同态加密编码打包——系数打包

2024-02-25 20:36

本文主要是介绍RLWE同态加密编码打包——系数打包,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RLWE同态加密的明文域

RLWE的加密方案,如BGV、BFV,加密的对象,实际上是分圆多项式环上的一个整系数多项式。而我们在平时接触到的需要加密的数据,如图像或者工资,通常是一个数。所以,在使用RLWE同态加密时,需要将数转化为多项式,这就是同态加密的明文编码,或者叫做明文的打包。

打包并不是说将数直接映射到多项式就可以了,我们需要保持打包的同态性质,这样才能使得同态运算的结果保持真正的同态性质。本文主要介绍更适用于加密同态加密的打包方法,系数打包。也就是将剩余环 Z T \mathbb{Z}_T ZT中的元素映射到多项式环 Z T [ x ] / ( x N + 1 ) \mathbb{Z}_T[x]/(x^N+1) ZT[x]/(xN+1)上。

单系数打包

最朴素的思想就是,一个数对应于一个多项式。设需要加密的数为 a a a, 则,我们可以用 a a a构造一个多项式,使得打包是加法同态的。

  1. a a a作为多项式的一个系数,其他的系数随机生成。
  2. a a a切分到多个系数,剩余的系数使用随机数。

方法1

固定位置 i i i,构造的明文多项式的第 i i i个系数等于需要打包的明文 a a a

P = p 0 + p 1 x + p 2 x 2 + ⋯ + p i x i + ⋯ + p N − 1 x N − 1 P=p_0+p_1x+p_2x^2+\cdots+p_ix^i+\cdots+p_{N-1}x^{N-1} P=p0+p1x+p2x2++pixi++pN1xN1,其中 p i = a p_i=a pi=a.

接下来我们证明这种打包是加法同态的。
假设明文 b b b打包成的明文多项式为 Q = q 0 + q 1 x + q 2 x 2 + ⋯ + q i x i + ⋯ + p N − 1 x N − 1 Q=q_0+q_1x+q_2x^2+\cdots+q_ix^i+\cdots+p_{N-1}x^{N-1} Q=q0+q1x+q2x2++qixi++pN1xN1,其中 q i = b q_i=b qi=b.
那么 S = P + Q = ∑ j = 0 N − 1 ( p j + q j m o d T ) x j S=P+Q=\sum_{j=0}^{N-1}(p_j+q_j \mod T)x^j S=P+Q=j=0N1(pj+qjmodT)xj
加法并不会导致多项式的次数增加,所以 S S S的次数为 N − 1 N-1 N1.
所以 S S S的第 i i i个系数 s i ≡ a + b m o d T s_i\equiv a+b \mod T sia+bmodT.
也就是打包是加法同态的。

方法2

a a a切分成随机的 k k k份,然后将这 k k k份作为明文多项式的其中一部分系数。
a = a 0 + a 1 + ⋯ + a k − 1 m o d T a=a_0+a_1+\cdots+a_{k-1} \mod T a=a0+a1++ak1modT.
P = a 0 + a 1 x + ⋯ + a k − 1 x k − 1 + p k x k + p k + 1 x k + 1 + ⋯ + p N − 1 x N − 1 P=a_0+a_1x+\cdots+a_{k-1}x^{k-1}+p_kx^k+p_{k+1}x^{k+1}+\cdots+p_{N-1}x^{N-1} P=a0+a1x++ak1xk1+pkxk+pk+1xk+1++pN1xN1.
同样由于加法不会导致多项式次数增加,从而模 x N + 1 x^N+1 xN+1,所以这样的打包是加法同态的。

相比于方法1,这样打包可以使得当 T T T较小的时候,需要加密的数很大,而且需要的加法次数比较多的时候,能避免溢出,从而保持正确的结果。

SIMD系数打包

SIMD是单指令多数据(Single Instruction Multiple Data)的缩写。对应于打包,也就是将 d d d个数映射为一个多项式, d d d叫做打包的批次大小。SIMD系数打包是单系数打包的一般性推广,也就是单系数打包是打包批次为1时的SIMD打包。

设要加密的数据为 A = ( a 0 , a 1 , a 2 , ⋯ , a d − 1 ) A=(a_0,a_1,a_2,\cdots,a_{d-1}) A=(a0,a1,a2,,ad1),则 P = a 0 + a 1 x + a 2 x 2 + ⋯ + a d − 1 x d − 1 + p d x d + p d + 1 x d + 1 + ⋯ + p N − 1 x N − 1 P=a_0+a_1x+a_2x^2+\cdots+a_{d-1}x^{d-1}+p_dx^d+p_{d+1}x^{d+1}+\cdots +p_{N-1}x^{N-1} P=a0+a1x+a2x2++ad1xd1+pdxd+pd+1xd+1++pN1xN1
这样的打包方式,显然是加法同态的。

代码示例

在OpenFHE中实现了SIMD的系数打包,但是其效率并不是很高。
下面是一个怎么使用系数打包的例子。

/*
OpenFHE test code by zyf.
coefficient packing example of bgv.
*/
#include<iostream>
#include"openfhe.h"
//The functions or classes of OpenFHE are in the namespace lbcrypto
using namespace lbcrypto;
using namespace std;int main(){// set the parameters of bgvCCParams<CryptoContextBGVRNS> parameters;//plaintext modulusparameters.SetPlaintextModulus(536903681);//set the multiplication depthparameters.SetMultiplicativeDepth(4);CryptoContext<DCRTPoly> cryptoContext = GenCryptoContext(parameters);//enable the functions of scheme.cryptoContext->Enable(PKE);cryptoContext->Enable(LEVELEDSHE);//cryptoContext->Enable(ADVANCEDSHE);KeyPair<DCRTPoly> keyPair;//generate keykeyPair = cryptoContext->KeyGen();cryptoContext->EvalMultKeyGen(keyPair.secretKey);//cout<<"ring dimension "<<cryptoContext->GetCryptoParameters()->GetElementParams()->GetRingDimension()<<endl;//original datavector<int64_t> v1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};vector<int64_t> v2 = {-1, -2, -3, 1, 2, 3, 4, 5, 6, 7, 8, 9};//pack the original data to plaintext polynomialPlaintext p1,p2;p1=cryptoContext->MakeCoefPackedPlaintext(v1);p2=cryptoContext->MakeCoefPackedPlaintext(v2);//encryptionauto c1 = cryptoContext->Encrypt(keyPair.publicKey, p1);auto c2 = cryptoContext->Encrypt(keyPair.publicKey, p2);auto sum=c1+c2;//decryptionPlaintext ans_sum;cryptoContext->Decrypt(keyPair.secretKey,sum,&ans_sum);cout<<ans_sum<<endl;
}

这篇关于RLWE同态加密编码打包——系数打包的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/746626

相关文章

Flutter打包APK的几种方式小结

《Flutter打包APK的几种方式小结》Flutter打包不同于RN,Flutter可以在AndroidStudio里编写Flutter代码并最终打包为APK,本篇主要阐述涉及到的几种打包方式,通... 目录前言1. android原生打包APK方式2. Flutter通过原生工程打包方式3. Futte

SpringBoot3使用Jasypt实现加密配置文件

《SpringBoot3使用Jasypt实现加密配置文件》这篇文章主要为大家详细介绍了SpringBoot3如何使用Jasypt实现加密配置文件功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编... 目录一. 使用步骤1. 添加依赖2.配置加密密码3. 加密敏感信息4. 将加密信息存储到配置文件中5

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

Java实现MD5加密的四种方式

《Java实现MD5加密的四种方式》MD5是一种广泛使用的哈希算法,其输出结果是一个128位的二进制数,通常以32位十六进制数的形式表示,MD5的底层实现涉及多个复杂的步骤和算法,本文给大家介绍了Ja... 目录MD5介绍Java 中实现 MD5 加密方式方法一:使用 MessageDigest方法二:使用

VSCode中C/C++编码乱码问题的两种解决方法

《VSCode中C/C++编码乱码问题的两种解决方法》在中国地区,Windows系统中的cmd和PowerShell默认编码是GBK,但VSCode默认使用UTF-8编码,这种编码不一致会导致在VSC... 目录问题方法一:通过 Code Runner 插件调整编码配置步骤方法二:在 PowerShell

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常

SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)

《SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)》本文介绍了如何在SpringBoot项目中使用Jasypt对application.yml文件中的敏感信息(如数... 目录SpringBoot使用Jasypt对YML文件配置内容进行加密(例:数据库密码加密)前言一、J

linux打包解压命令方式

《linux打包解压命令方式》文章介绍了Linux系统中常用的打包和解压命令,包括tar和zip,使用tar命令可以创建和解压tar格式的归档文件,使用zip命令可以创建和解压zip格式的压缩文件,每... 目录Lijavascriptnux 打包和解压命令打包命令解压命令总结linux 打包和解压命令打

将java程序打包成可执行文件的实现方式

《将java程序打包成可执行文件的实现方式》本文介绍了将Java程序打包成可执行文件的三种方法:手动打包(将编译后的代码及JRE运行环境一起打包),使用第三方打包工具(如Launch4j)和JDK自带... 目录1.问题提出2.如何将Java程序打包成可执行文件2.1将编译后的代码及jre运行环境一起打包2

配置springboot项目动静分离打包分离lib方式

《配置springboot项目动静分离打包分离lib方式》本文介绍了如何将SpringBoot工程中的静态资源和配置文件分离出来,以减少jar包大小,方便修改配置文件,通过在jar包同级目录创建co... 目录前言1、分离配置文件原理2、pom文件配置3、使用package命令打包4、总结前言默认情况下,