华为---RSTP(三)---P/A机制及RSTP的生成树形成过程

2024-02-25 14:04

本文主要是介绍华为---RSTP(三)---P/A机制及RSTP的生成树形成过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1. P/A机制简介

1.1 P/A机制的作用

1.2 P/A协商的前提条件

1.3 RSTP选举思路

2. P/A协商过程

3. 举例说明RSTP的生成树形成过程

3.1 示例环境要求

3.2 RSTP的生成树形成过程

3.2.1 SW和SW1之间链路上抓包分析

3.2.2 SW和SW2之间链路上抓包分析

3.2.3 SW1和SW2之间链路上抓包分析

3.2.4 SW2和SW3之间链路上抓包分析

3.2.5 SW1和SW3之间链路上抓包分析

3.2.6 备份端口选举抓包分析


1. P/A机制简介

P(Proposal)/A(Agreement)机制---请求/确认机制
        P/A机制        P:Proposal-协商        A:Agreement-同意
        P/A机制是RSTP( Rapid Spanning Tree Protocol,快速生成树协议)中的一个关键组成部分,它允许指定的端口在满足一定条件下快速进入转发状态,而无需等待定时器的超时。

1.1 P/A机制的作用

        为了使生成树链路上的端口(根端口、指定端口)快速进入转发状态,不用等待30秒延时(2个转发延时)。

1.2 P/A协商的前提条件

        P/A机制的触发前提是DP端口处于Discarding状态,两台交换设备之间链路必须是点对点的全双工模式,一旦P/A协商不成功,指定端口到转发状态就需要等待两个转发延时(30秒),协商过程与STP一样。

1.3 RSTP选举思路

        RSTP选举原理和STP本质上相同:选举根交换机->选举非根交换机上的根端口->选举指定端口->选举预备端口和备份端口。
        事实上对于STP,指定端口的选择可以很快完成,主要的速度瓶颈在于:为了避免环路,必须等待足够长的时间,使全网的端口状态全部确定,也就是说必须要等待至少一个Forward Delay所有端口才能进行转发。而RSTP的主要目的就是消除这个瓶颈,通过阻塞自己的非根端口来保证不会出现环路。而使用P/A机制加快了上游端口转到Forwarding状态的速度。

        RSTP在选举的过程中加入了“发起请求-回复同意”(P/A机制)这种确认机制,由于每个步骤有确认就不需要依赖计时器来保证网络拓扑无环后才进入转发状态,只需要考虑BPDU发送报文并计算无环拓扑的时间(一般都是秒级)。解决了STP网络收敛慢问题。

2. P/A协商过程

        如下图所示,根桥S1和S2之间新添加了一条链路。在当前状态下,S2的另外几个端口p2是Alternate端口,p3是指定端口且处于Forwarding状态,p4是边缘端口。

        Proposal/Agreement过程示意图

新链路连接成功后,P/A机制协商过程如下:

  1. p0和p1两个端口马上都先成为指定端口,发送RST BPDU。
  2. S2的p1口收到更优的RST BPDU,马上意识到自己将成为根端口,而不是指定端口,停止发送RST BPDU。
  3. S1的p0进入Discarding状态,于是发送的RST BPDU中把proposal置1。
  4. S2收到根桥发送来的携带proposal的RST BPDU,开始将自己的所有端口进入sync变量置位。
  5. p2已经阻塞,状态不变;p4是边缘端口,不参与运算;所以只需要阻塞非边缘指定端口p3。
  6. 各端口的synced变量置位后,p2、p3进入Discarding状态,p1进入Forwarding状态并向S1返回Agreement位置位的回应RST BPDU。
  7. 当S1判断出这是对刚刚发出的Proposal的回应,于是端口p0马上进入Forwarding状态。

        上述P/A机制协商过程是华为官方资料描述,说明了两个RSTP交换机端口之间新加链路的P/A协商过程,没有讲述整个RSTP网络如何进行P/A协商的?生成树如何形成的?。

3. 举例说明RSTP的生成树形成过程

3.1 示例环境要求

        组网如下图所示,提前配置SW为根交换机,所有交换机都配置成RSTP模式。为便于网络数据抓取,每两台交换机之间用两台集线器hub相连,先开启所有集线器,然后在集线器间的节点上抓取数据,最后选中所有交换机点击开启设备。

3.2 RSTP的生成树形成过程

        通过抓包分析根交换机、根端口、指定端口、预备端口和备份端口的选举,RSTP的生成树形成过程。

3.2.1 SW和SW1之间链路上抓包分析


        SW的Eth 0/0/1和SW1的Eth 0/0/3两个端口马上都先成为指定端口,并处于Discarding状态,发送Proposal位置位1的RST BPDU。

        SW1的Eth 0/0/3口收到更优的Proposal位置位1的RST BPDU:
        (1)马上意识到自己将成为根端口,而不是指定端口;
        (2)阻塞除SW1的Eth 0/0/3口和边缘端口外的所有端口;
        (3)给SW的Eth 0/0/1口回复Agreement位置位1的RST BPDU;
        (4)SW1所有非边缘端口发送Topology Change位置位1的RST BPDU,更新Mac地址表;
        (5)停止发送RST BPDU。

        SW交换机收到P/A请求的回应后:
        (1)SW的Eth 0/0/1端口马上进入Forwarding状态;
        (2)SW的所有指定端口发送Topology Change位置位1的RST BPDU,更新Mac地址表。

        到此SW的Eth 0/0/1端口和SW1的Eth 0/0/3端口之间的链路P/A协商完成,SW为根交换机,SW的Eth 0/0/1为指定端口,SW1的Eth 0/0/3为根端口。

3.2.2 SW和SW2之间链路上抓包分析

        分析过程和SW的Eth 0/0/1端口至SW1的Eth 0/0/3端口之间的链路P/A协商一样,不再赘述,确认SW为根交换机,SW的Eth 0/0/2为指定端口,SW2的Eth 0/0/3为根端口。

3.2.3 SW1和SW2之间链路上抓包分析


        SW1的Eth 0/0/1和SW2的Eth 0/0/1两个端口马上都先成为指定端口,并处于Discarding状态,发送Proposal位置位1的RST BPDU。

        上述图说明P/A协商失败,SW2交换机发送了约15秒的P置位 RST BPDU,SW2的Eth 0/0/1端口进入Learning状态,15秒后进入forwarding状态。

        一旦P/A协商不成功,指定端口的选择就需要等待两个Forward Delay,协商过程与STP一样,SW1和SW2交换机根交换机ID和根路径开销都一样,所以按照STP指定端口选举规则进行选举,需要通过比较各自的交换机ID(BID)选举指定端口,SW1的ID是32768.4c1f-ccbe-6957,SW2的ID是32768.4c1f-cc16-6c7a,SW1的ID大于SW2的ID,所以SW2的Eth 0/0/1口为指定端口,SW1的Eth 0/0/1口为预备端口。

3.2.4 SW2和SW3之间链路上抓包分析

        分析过程和SW的Eth 0/0/1端口至SW1的Eth 0/0/3端口之间的链路P/A协商一样,不再赘述,确认SW为根交换机,SW2的Eth 0/0/2为指定端口,SW3的Eth 0/0/1为根端口。

3.2.5 SW1和SW3之间链路上抓包分析

        SW1的Eth 0/0/2和SW3的Eth 0/0/2两个端口马上都先成为指定端口,并处于Discarding状态,发送Proposal位置位1的RST BPDU。

        上述图说明P/A协商失败,SW1交换机发送了约15秒的P置位 RST BPDU,SW1的Eth 0/0/2端口进入Learning状态,15秒后进入forwarding状态。

        一旦P/A协商不成功,指定端口的选择就需要等待两个Forward Delay,协商过程与STP一样。SW1和SW3交换机根交换机ID一样,SW1根路径开销是200000,SW3根路径开销是400000,按照STP指定端口选举规则进行选举,SW1根路径开销小,所以SW1的Eth 0/0/2口为指定端口,SW3的Eth 0/0/2口为预备端口。

3.2.6 备份端口选举抓包分析

        如上网络拓扑图所示,在链路6和链路7上抓包:


        从上图可以看出,数据都是从SW3的Eth 0/0/3口发出的RST BPDU,说明SW3在发送RST BPDU前,因为根交换机ID、跟路径开销、当前交换机ID都一样,所以通过比较端口ID(PID),选择小端口ID的Eth 0/0/3端口为指定端口,大端口ID的Eth 0/0/4端口为备份端口。

SW3的Eth 0/0/3口P/A协商是失败的,是按照STP指定端口选举规则进行选举的。

  • RSTP的生成树是每条链路之间进行P/A协商,有更优RST BPDU立即更新。
  • Alternate端口就是由于学习到其它交换机发来的更优配置BPDU报文(更小的RID)而阻塞的端口。
  • Backup端口就是由于学习到自己发送的更优配置BPDU报文而阻塞的端口。

这篇关于华为---RSTP(三)---P/A机制及RSTP的生成树形成过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/745703

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

作业提交过程之HDFSMapReduce

作业提交全过程详解 (1)作业提交 第1步:Client调用job.waitForCompletion方法,向整个集群提交MapReduce作业。 第2步:Client向RM申请一个作业id。 第3步:RM给Client返回该job资源的提交路径和作业id。 第4步:Client提交jar包、切片信息和配置文件到指定的资源提交路径。 第5步:Client提交完资源后,向RM申请运行MrAp

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

hdu 1102 uva 10397(最小生成树prim)

hdu 1102: 题意: 给一个邻接矩阵,给一些村庄间已经修的路,问最小生成树。 解析: 把已经修的路的权值改为0,套个prim()。 注意prim 最外层循坏为n-1。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstri