基于python3.6+tensorflow2.2的石头剪刀布案例

2024-02-24 18:20

本文主要是介绍基于python3.6+tensorflow2.2的石头剪刀布案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

unzip_save.py

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  # 不显示等级2以下的提示信息
import zipfile
import matplotlib.pyplot as plt
import matplotlib.image as mpimg# 解压
local_zip1 = 'E:/Python/pythonProject_1/rps/tmp/rps.zip' # 数据集压缩包路径
zip_ref1 = zipfile.ZipFile(local_zip1, 'r') # 打开压缩包,以读取方式
zip_ref1.extractall('E:/Python/pythonProject_1/rps/tmp/') # 解压到以下路径
zip_ref1.close()local_zip2 = 'E:/Python/pythonProject_1/rps/tmp/rps-test-set.zip' # 数据集压缩包路径
zip_ref2 = zipfile.ZipFile(local_zip2, 'r') # 打开压缩包,以读取方式
zip_ref2.extractall('E:/Python/pythonProject_1/rps/tmp/') # 解压到以下路径
zip_ref2.close()rock_dir = os.path.join('E:/Python/pythonProject_1/rps/tmp/rps/rock')
paper_dir = os.path.join('E:/Python/pythonProject_1/rps/tmp/rps/paper')
scissors_dir = os.path.join('E:/Python/pythonProject_1/rps/tmp/rps/scissors')rock_files = os.listdir(rock_dir)
print(rock_files[:10])paper_files = os.listdir(paper_dir)
print(paper_files[:10])scissors_files = os.listdir(scissors_dir)
print(scissors_files[:10])pic_index = 2
next_rock = [os.path.join(rock_dir, fname)for fname in rock_files[pic_index - 2:pic_index]]
next_paper = [os.path.join(paper_dir, fname)for fname in paper_files[pic_index - 2:pic_index]]
next_scissors = [os.path.join(scissors_dir, fname)for fname in scissors_files[pic_index - 2:pic_index]]for i, img_path in enumerate(next_rock+next_paper+next_scissors):img = mpimg.imread(img_path)plt.imshow(img)plt.axis('Off')plt.show()


model_training_fit.py

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  # 不显示等级2以下的提示信息import tensorflow as tf
# from tensorflow import keras
# from tensorflow.keras.optimizers import RMSprop
# from tensorflow.keras.preprocessing import image
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plttraining_datagen = ImageDataGenerator(# 数据增强rescale=1. / 255,rotation_range=40, # 旋转范围width_shift_range=0.2, # 宽平移height_shift_range=0.2,# 高平移shear_range=0.2, # 剪切zoom_range=0.2, # 缩放horizontal_flip=True,fill_mode='nearest'
)validation_datagen = ImageDataGenerator(rescale=1. / 255
)TRAINING_DIR = 'E:/Python/pythonProject_1/rps/tmp/rps/'
training_generator = training_datagen.flow_from_directory(TRAINING_DIR,target_size = (150, 150),class_mode = 'categorical'
)VALIDATION_DIR = 'E:/Python/pythonProject_1/rps/tmp/rps-test-set/'
validation_generator = validation_datagen.flow_from_directory(VALIDATION_DIR,target_size = (150, 150),class_mode = 'categorical'
)#======== 模型构建 =========
model = tf.keras.models.Sequential([tf.keras.layers.Conv2D(64, (3, 3), activation = 'relu', input_shape = (150, 150, 3)), # 输入参数:过滤器数量,过滤器尺寸,激活函数:relu, 输入图像尺寸tf.keras.layers.MaxPooling2D(2, 2), # 池化:增强特征tf.keras.layers.Conv2D(64, (3, 3), activation = 'relu'), # 输入参数:过滤器数量、过滤器尺寸、激活函数:relutf.keras.layers.MaxPooling2D(2, 2),tf.keras.layers.Conv2D(128, (3, 3), activation='relu'),  # 输入参数:过滤器数量、过滤器尺寸、激活函数:relutf.keras.layers.MaxPooling2D(2, 2),tf.keras.layers.Conv2D(128, (3, 3), activation='relu'),  # 输入参数:过滤器数量、过滤器尺寸、激活函数:relutf.keras.layers.MaxPooling2D(2, 2),tf.keras.layers.Flatten(), # 输入层tf.keras.layers.Dense(512, activation = 'relu'), # 全连接隐层 神经元数量:128 ,激活函数:relutf.keras.layers.Dense(3, activation = 'softmax') # 英文字母分类 26 ,阿拉伯数字分类 10  输出用的是softmax 概率化函数 使得所有输出加起来为1 0-1之间
])model.summary()#======== 模型参数编译 =========
model.compile(optimizer = 'rmsprop',loss = 'categorical_crossentropy', # 损失函数: 稀疏的交叉熵 binary_crossentropymetrics = ['accuracy']
)#======== 模型训练 =========
# Note that this may take some time.
history = model.fit_generator(training_generator,epochs = 25,validation_data = validation_generator,verbose = 1
)model.save('E:/Python/pythonProject_1/rps/model.h5') # model 保存#-----------------------------------------------------------
# Retrieve a list of list result on training and test data
# set for each training epoch
#-----------------------------------------------------------
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']epochs = range(len(acc)) # Get number of epochs#-----------------------------------------------------------
# Plot training and validation accuracy per epoch
#-----------------------------------------------------------
plt.plot(epochs, acc, 'r', label = "tra_acc")
plt.plot(epochs ,val_acc, 'b', label = "val_acc")
plt.title("training and validation accuracy")
plt.legend(loc=0)
plt.grid(ls='--')  # 生成网格
plt.show()
# 曲线呈直线是因为epochs/轮次太少
#-----------------------------------------------------------
# Plot training and validation loss per epoch
#-----------------------------------------------------------
plt.plot(epochs, loss, 'r', label = "train_loss")
plt.plot(epochs ,val_loss, 'b', label = "val_loss")
plt.title("training and validation loss")
plt.legend(loc=0)
plt.grid(ls='--')  # 生成网格
plt.show()
# 曲线呈直线是因为epochs/轮次太少


predict.py

import numpy as np
from tensorflow.keras.preprocessing import image
from tensorflow import keras
model = keras.models.load_model('E:/Python/pythonProject_1/rps/model.h5')# predicting images
path = 'E:/Python/pythonProject_1/rps/scissor.png'
img = image.load_img(path, target_size=(150, 150))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)images = np.vstack([x])
classes = model.predict(images, batch_size=10)
print(classes)


model.summary

Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 148, 148, 64)      1792      
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 74, 74, 64)        0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 72, 72, 64)        36928     
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 36, 36, 64)        0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 34, 34, 128)       73856     
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 17, 17, 128)       0         
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 15, 15, 128)       147584    
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 7, 7, 128)         0         
_________________________________________________________________
flatten (Flatten)            (None, 6272)              0         
_________________________________________________________________
dense (Dense)                (None, 512)               3211776   
_________________________________________________________________
dense_1 (Dense)              (None, 3)                 1539      
=================================================================
Total params: 3,473,475
Trainable params: 3,473,475
Non-trainable params: 0
_________________________________________________________________


测试结果:

Epoch 23/25
79/79 [==============================] - 83s 1s/step - loss: 0.0410 - accuracy: 0.9905 - val_loss: 0.0064 - val_accuracy: 1.0000
Epoch 24/25
79/79 [==============================] - 82s 1s/step - loss: 0.0621 - accuracy: 0.9798 - val_loss: 0.1802 - val_accuracy: 0.9382
Epoch 25/25
79/79 [==============================] - 82s 1s/step - loss: 0.0704 - accuracy: 0.9821 - val_loss: 0.0640 - val_accuracy: 0.9704


 预测结果:

scissor.png

>>> print(classes)[[0. 0. 1.]]


数据来源地址: https://laurencemoroney.com/datasets.html

这篇关于基于python3.6+tensorflow2.2的石头剪刀布案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/742957

相关文章

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

客户案例:安全海外中继助力知名家电企业化解海外通邮困境

1、客户背景 广东格兰仕集团有限公司(以下简称“格兰仕”),成立于1978年,是中国家电行业的领军企业之一。作为全球最大的微波炉生产基地,格兰仕拥有多项国际领先的家电制造技术,连续多年位列中国家电出口前列。格兰仕不仅注重业务的全球拓展,更重视业务流程的高效与顺畅,以确保在国际舞台上的竞争力。 2、需求痛点 随着格兰仕全球化战略的深入实施,其海外业务快速增长,电子邮件成为了关键的沟通工具。

【区块链 + 人才服务】区块链集成开发平台 | FISCO BCOS应用案例

随着区块链技术的快速发展,越来越多的企业开始将其应用于实际业务中。然而,区块链技术的专业性使得其集成开发成为一项挑战。针对此,广东中创智慧科技有限公司基于国产开源联盟链 FISCO BCOS 推出了区块链集成开发平台。该平台基于区块链技术,提供一套全面的区块链开发工具和开发环境,支持开发者快速开发和部署区块链应用。此外,该平台还可以提供一套全面的区块链开发教程和文档,帮助开发者快速上手区块链开发。

STL经典案例(四)——实验室预约综合管理系统(项目涉及知识点很全面,内容有点多,耐心看完会有收获的!)

项目干货满满,内容有点过多,看起来可能会有点卡。系统提示读完超过俩小时,建议分多篇发布,我觉得分篇就不完整了,失去了这个项目的灵魂 一、需求分析 高校实验室预约管理系统包括三种不同身份:管理员、实验室教师、学生 管理员:给学生和实验室教师创建账号并分发 实验室教师:审核学生的预约申请 学生:申请使用实验室 高校实验室包括:超景深实验室(可容纳10人)、大数据实验室(可容纳20人)、物联网实验

(入门篇)JavaScript 网页设计案例浅析-简单的交互式图片轮播

网页设计已经成为了每个前端开发者的必备技能,而 JavaScript 作为前端三大基础之一,更是为网页赋予了互动性和动态效果。本篇文章将通过一个简单的 JavaScript 案例,带你了解网页设计中的一些常见技巧和技术原理。今天就说一说一个常见的图片轮播效果。相信大家在各类电商网站、个人博客或者展示页面中,都看到过这种轮播图。它的核心功能是展示多张图片,并且用户可以通过点击按钮,左右切换图片。

Ubuntu 16.04安装python3.6及其以上版本

Ubuntu16.04 自带python2.7 和3.5,若需要安装高版本需要添加源 网络搜索几个源 sudo add-apt-repository ppa:jonathonf/python-3.6sudo apt-get updatesudo apt-get install python3.6 这个已不存在 会报错如下 Cannot add PPA: 'ppa:~jonathonf

SpringMVC的第一个案例 Helloword 步骤

第一步:web.xml配置 <?xml version="1.0" encoding="UTF-8"?> <web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocati