JavaCard CPU的设计与FPGA实现

2024-02-24 18:08
文章标签 java 实现 设计 cpu fpga card

本文主要是介绍JavaCard CPU的设计与FPGA实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 JavaCard简介

  智能卡是指集成了CPU、ROM、RAM、COS(芯片操作系统)和EEPROM,能储存信息和图像,具备读/写能力,信息能被加密保护的便携卡。智能卡的最基本标准是 ISO/IEC7816。智能卡在银行、电信等行业得到广泛应用,但在发展过程中也遇到很多问题,主要有:各厂商指令集不统一;编程接口APIs太复杂;开发环境不通用,新卡开发都要熟悉开发环境;系统不兼容,专卡专用。由于开发门槛过高,影响了智能卡的发展。市场对智能卡的发展提出了新的要求,Sun公司提出了Java Card开放标准。JavaCard技术将智能卡与Java技术相结合,克服了智能卡开发技术太专业、开发周期长等阻碍智能卡普及的缺点,允许智能卡运行 Java编写的应用程序。JavaCard技术继承了Java语言的优点,制定了一个安全、便捷且多功能的智能卡平台。

  JavaCard基本的硬件配置(来自Sun文档)为:512B RAM、24KB ROM、8KB EEPROM、8位处理器。典型的JavaCard设备有8位或16位的CPU,3.7MHz时钟频率,1KB的RAM和大于16KB的非易失存储(EEPROM或Flash)。高性能的智能卡带有独立的处理器、加密芯片及密码信息。

  JavaCard系统的实现有基于软件虚拟机和基于硬件两种方法。基于软件虚拟机方法是在非Java处理器上用软件方法模拟实现JavaCard平台,在此平台上实现JavaCard应用。基于硬件方法是硬件逻辑实现JavaCard处理器,在此硬件基础上实现JavaCard平台,再在此平台上实现JavaCard应用。

2 Java处理器的实现方式比较

  Java处理器有以下几种实现方式:

  (1)通用CPU+OS+Java软件解释器,软件解释执行Java指令。
  (2)通用CPU+OS+Java JIT(JuST-In-Time)编译器,按块编译执行Java指令。
  (3)Java加强CPU+OS+特殊的Java编译器,充分使用Java加强硬件的优势。
  (4)Java 硬件CPU,本地支持Java指令,执行效率最高。

  目前的Java系统是基于软件虚拟机实现的,软件解析执行Java指令,如(1)、(2)。用软件实现JavaCard虚拟机,需要软件 JavaCard指令解释器,将Java指令转换到本地CPU的指令集。这样,不但速度慢,而且虚拟机本身占用内存资源,不适合在智能卡这种资源有限的硬件中应用。方式(3)要求CPU硬件实现部分Java指令,它需要特殊的编译器来充分发挥Java加强CPU的功能。方式(4)是最有效的解决方法, Java指令的执行不再需要先转换到宿主CPU的本地指令集,同时,它也不占用RAM等软件资源,可以给应用程序提供更多的资源。

  本文介绍JavaCard CPU。系统采用Verilog描述,设计成一个配置灵活、修改方便、资源占用少、兼容性好、可以在普通FPGA中实现的软核。

3 JavaCard CPU的设计

3.1 Java CPU的硬件实现技术

  在CPU的设计中,当从内存中取出下一条指令时,执行这条指令有两种方法,即硬件逻辑方法和微码序列方法。硬件逻辑方法使用译码器、锁存器、计数器和其他一些逻辑部件转移和操作数据,完成指令功能。微码序列方法是在内部实现一个非常简洁、快速的微码处理器。此微码处理器的每条指令对应很简单的硬件动作(一般都是单周期指令),将要执行的CUP指令作为索引,索引到微码ROM中的某个地址,通过执行此地址处的一组微码完成指令功能。

  硬件逻辑方法的优点是能设计出更快的CPU,缺点是难以实现复杂的指令集,同时会导致芯片面积增大。微码序列方法的优点是可以减小芯片的面积,实现复杂指令集,缺点是速度有时较慢。两种方法的速度快慢并非绝对,微码指令是简单指令,一般每个时钟就能执行一条指令。硬件逻辑方法在执行CPU指令时,通常也是划分为几个阶段执行,同样需要几个时钟。实际设计中采用哪种方法要权衡利弊,在速度不是关键时,微码序列方法是个很好的选择。

3.2 JavaCard CPU结构

  JavaCard CPU采用微码实现,核心部分是微码处理器,用微码指令序列实现JavaCard指令。微码处理器主要组成为:主控逻辑CORE,运算单元ALU,内部堆栈单元STACK,微码ROM,微码指令指针调整模块MCPC,外存读写接口MEMRW,通过wishbONe总线连接外部RAM、ROM、I/O。各模块之间连接关系、数据通路、控制通路以及应答信号连接见图1。

        

3.3 微码处理器各模块接口及功能

  (1)运算单元ALU

  module alu(x,y,op,z,flag,calc,rst,a ck,clk);
  x、y为输入操作数,op为操作码,z为输出结果,flag为输出运算结果标志,calc为运算使能控制信号,ack为运算结束应答。本模块完成op定义的运算,并给出标志位和应答。

  (2)内部堆栈STACK

  module stack(clk,rst,pop,push,data_i,data_o,sp,ack);
  pop、push为堆栈的弹出及压入操作信号,data_i、data_o为数据输入输出,sp为堆栈指针,ack为堆栈操作结束应答。本模块根据pop、push信号对堆栈进行操作。

  (3)微码ROM

  module microcoderom(mcp,mcr);
  MCP为微码ROM的指针,MCR为微码寄存器。根据微码指针MCP,在MCR上输出MCP处的微码数据。

  (4)微码指令指针调整模块MCPC

  module mcpc(clk,rst,load,new_mcp,hold,remap,iNStr,mcp);
  微码指针有保持、重加载、重映射三种操作。重加载是用new_mcp的值作为新的MCP值。重映射是将CPU指令Instr对应的微码序列首地址作为新的MCP值。

  load信号有效,用new_mcp的值给MCP赋值;
  hold信号有效,保持MCP值不变;
  remap信号有效,则将CPU指令Instr做为索引,得到Instr指令对应的微码序列首地址,将首地址赋给MCP。
  以上三个信号均无效时,每时钟MCP自动加1。

  (5)外存读写接口MEMRW

  module memrw(clk,addr,data_read_in,data_write_out,ack,rst,rd,wr,wb_stb_out, wb_cyc_out,wb_ack_in,wb_addr_out, wb_data_in,wb_data_out,wb_we_out);
  对外接口采用开源的wishbone总线标准,wb*信号是wishbone相关信号。根据rd、wr读写信号,操作wishbone信号,等待wishbone的应答,然后将数据和应答信号反馈给主控模块。

3.4 本JavaCard CPU设计的特点

  (1)主控模块与其他从模块之间用使能信号和应答信号保持同步,从模块在完成操作后只需给出应答信号,即可匹配不同速度的从模块。

  (2)微码指令的设计。所有的微码指令为单指令,即不带任何操作数。微码指令本身包含所需操作的信息,如在哪两个寄存器之间转移数据等。对于跳转操作等必须带后续操作数的指令采取变通方法,先将所需操作数存入内部寄存器,再执行跳转等指令。详细示例为:

  微码定义为16位。位15指示本微码是指令还是数据。位15==1表示是数据,此时微码的低8位是一个数据,处理此微码时,要将此8位数据提取出来,存入内部寄存器;位15==0表示是指令。当需要执行一个跳转Jmp 0x0809时,微码序列方法使用三条微码表示:

  0x8008 //位15==1,是数据型微码
  0x8009
  JMP //指令型微码助记符

  执行时,遇到前面两个数据型微码,会将08和09存入内部16位数据寄存器的高低8位;执行JMP指令时,隐含使用此内部数据寄存器。

  (3)所有的微码指令是单周期指令。由于采用了(2)中所述的单指令微码,在执行当前微码指令的同时读取下一条微码指令,可以做到每个时钟执行一条微码。

  (4)简洁的主控逻辑。所有JavaCard指令均由微码执行,不采用硬件陷入、软件模拟方式,简化了主控逻辑设计。主控模块状态机仅有EXEC_MC和HLT两个状态。CPU复位后,一直处于执行微码EXEC_MC状态,直到执行HLT微码指令。

  (5)适应性好。采用了应答机制,可以匹配不同速度的部件;对外采用wishbone总线,简化了各部件接口的设计,方便了外部设备的扩充。

  (6)I/O采用内存映射方式统一编址,避免了非Java指令的引入,保证了兼容性。

3.5 Verilog表述的微码处理器核心逻辑

  下面是主控逻辑框架代码的一部分。本段代码体现了如何处理数据型微码和指令型微码,可以在YOUR_MICRO_CODE_INSTR处添加需要的微码指令以及对应的操作。

always@(posedge clk or posedge reset)
  begin
   if(reset)
    begin
     new_mcp[15:0]<=init_ADDR;//初始化微码

                   //序列首地址
     {pop,push,alu_calc,memrd,memwr,load_mcp,hold_mcp,remap_mcp}<=8′b00000000;
     H_READED<=1′ b0;//表示是否读过了一次
             //数据型微码
     state[1:0]<=EXEC_MC;
    end
   else
    begin
     case(state[1:0])
      EXEC_MC:
       begin//首先根据mcr的位15判断是数据型
          //微码还是指令型微码
       if(mcr[15])//mcr中存放微码,位15==1表示
            //此微码是数据型,先保存高8位,再低8位
        begin
         if(H_READED==1′b0)//首个数据型
                  //微码,数据保存到高8位
         begin
          {mcdata[15:8]}<=mcr[7:0];
                  //mcdata是内部数据寄存器
          H_READED<=1′b1;
         end
       else
         begin
          {mcdata[7:0]}<=mcr[7:0];
          H_READED<=1′b0;
         end
      end
     else//表示此微码是指令,根据后面的15位
        //分支操作
      begin
        case(mcr[15:0])
          YOUR_MICRO_CODE_INSTR://
          begin
            ……//定义的微码操作
          end
            ……//其他微码指令处理
        endcase
      end//end for mcr为指令处理
    end
    HLT://state[1:0]=HLT,宕机状态处理
    …
   endcase//end for state[1:0]
  end//end for reset
end//end for always@(posedge clk or posedge reset)

  系统采用微码实现,用微码序列控制读取Java指令、存储数据,实现Java指令。JavaCard指令被解释执行的过程如下:

  读取JavaCard PC处的JavaCard指令至指令寄存器Instr,发出remap信号给微码指针调整模块MCPC,微码指针寄存器MCP得到新的JavaCard指令对应的微码序列首地址,MCP的变化使微码指令寄存器MCR变为该微码序列的首个微码指令,再由微码处理器执行此MCR中的微码。

4 JavaCard CPU测试平台的FPGA实现

4.1 外围接口和模块

  测试平台是以一块xc2s200芯片为核心的简单开发板,全部设计都在此芯片内实现,包括CPU逻辑、存储单元等,板上的8位led指示灯用作I/O输出端口。

4.2 测试平台框架

  测试平台框架结构如图2所示。

               

测试平台框架结构图

4.3 结果说明

  设计是用Verilog语言实现的,内部使用16位数据总线,对外是8位的wishbone总线,微码ROM为4KB,外接512B的ROM和512B的RAM。

  JavaCard 定义了187条指令,其中47条指令涉及32位整型数。对32位整型数的支持是可选的,本次没有实现对32位整型数操作的指令,遇到未定义指令的操作为宕机。共定义了109条微码指令。用了3273条微码指令序列完成系统初始化操作和解释JavaCard指令,每条JavaCard指令约用17条微码指令执行(主要是有些面向对象的复杂指令需要更多的微码解释)。

  整个系统占用资源很少:4个Block RAM,2 052个Slice,可以在普通FPGA上实现。

  测试代码下载到板上的ROM中,以24MHz时钟运行通过,验证了JavaCard指令处理的正确性,性能完全满足JavaCard虚拟机标准要求。

  实现JavaCard硬件CPU是JavaCard的发展方向。因用途原因,它不需要很高的性能,而更需要成本低、资源占用少、功耗低等特性。 JavaCard指令集是面向对象的复杂指令集,很难直接用硬件实现。采用微码方式实现是很好的选择,每一条微码对应一个很简单的硬件动作,硬件实现容易,且使用的资源少。用微码序列完成JavaCard指令,使硬件设计保持简洁、灵活、修改方便,有些改动只需重写微码序列而不需要更改硬件设计;添加新功能支持的也只需要修改微码,如硬件实现加密方法调用接口。JavaCard硬件CPU的实现必将促进JavaCard的应用。

这篇关于JavaCard CPU的设计与FPGA实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/742915

相关文章

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

Java五子棋之坐标校正

上篇针对了Java项目中的解构思维,在这篇内容中我们不妨从整体项目中拆解拿出一个非常重要的五子棋逻辑实现:坐标校正,我们如何使漫无目的鼠标点击变得有序化和可控化呢? 目录 一、从鼠标监听到获取坐标 1.MouseListener和MouseAdapter 2.mousePressed方法 二、坐标校正的具体实现方法 1.关于fillOval方法 2.坐标获取 3.坐标转换 4.坐

Spring Cloud:构建分布式系统的利器

引言 在当今的云计算和微服务架构时代,构建高效、可靠的分布式系统成为软件开发的重要任务。Spring Cloud 提供了一套完整的解决方案,帮助开发者快速构建分布式系统中的一些常见模式(例如配置管理、服务发现、断路器等)。本文将探讨 Spring Cloud 的定义、核心组件、应用场景以及未来的发展趋势。 什么是 Spring Cloud Spring Cloud 是一个基于 Spring

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

java8的新特性之一(Java Lambda表达式)

1:Java8的新特性 Lambda 表达式: 允许以更简洁的方式表示匿名函数(或称为闭包)。可以将Lambda表达式作为参数传递给方法或赋值给函数式接口类型的变量。 Stream API: 提供了一种处理集合数据的流式处理方式,支持函数式编程风格。 允许以声明性方式处理数据集合(如List、Set等)。提供了一系列操作,如map、filter、reduce等,以支持复杂的查询和转

Java面试八股之怎么通过Java程序判断JVM是32位还是64位

怎么通过Java程序判断JVM是32位还是64位 可以通过Java程序内部检查系统属性来判断当前运行的JVM是32位还是64位。以下是一个简单的方法: public class JvmBitCheck {public static void main(String[] args) {String arch = System.getProperty("os.arch");String dataM

详细分析Springmvc中的@ModelAttribute基本知识(附Demo)

目录 前言1. 注解用法1.1 方法参数1.2 方法1.3 类 2. 注解场景2.1 表单参数2.2 AJAX请求2.3 文件上传 3. 实战4. 总结 前言 将请求参数绑定到模型对象上,或者在请求处理之前添加模型属性 可以在方法参数、方法或者类上使用 一般适用这几种场景: 表单处理:通过 @ModelAttribute 将表单数据绑定到模型对象上预处理逻辑:在请求处理之前

eclipse运行springboot项目,找不到主类

解决办法尝试了很多种,下载sts压缩包行不通。最后解决办法如图: help--->Eclipse Marketplace--->Popular--->找到Spring Tools 3---->Installed。

JAVA读取MongoDB中的二进制图片并显示在页面上

1:Jsp页面: <td><img src="${ctx}/mongoImg/show"></td> 2:xml配置: <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans"xmlns:xsi="http://www.w3.org/2001

Java面试题:通过实例说明内连接、左外连接和右外连接的区别

在 SQL 中,连接(JOIN)用于在多个表之间组合行。最常用的连接类型是内连接(INNER JOIN)、左外连接(LEFT OUTER JOIN)和右外连接(RIGHT OUTER JOIN)。它们的主要区别在于它们如何处理表之间的匹配和不匹配行。下面是每种连接的详细说明和示例。 表示例 假设有两个表:Customers 和 Orders。 Customers CustomerIDCus