密码学系列之:Argon2加密算法详解

2024-02-24 15:58

本文主要是介绍密码学系列之:Argon2加密算法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 简介
  • 密钥推导函数key derivation function
  • Password Hashing Competition
  • Argon2算法
    • Argon2的输入参数
    • 处理流程

简介

Argon2是一个密钥推导函数,在2015年7月被选为密码哈希大赛的冠军,它由卢森堡大学的Alex Biryukov、Daniel Dinu和Dmitry Khovratovich设计,Argon2的实现通常是以Creative Commons CC0许可(即公共领域)或Apache License 2.0发布,并提供了三个相关版本,分别是Argon2d,Argon2i和Argon2id。

本文将会讨论一下Argon2的原理和使用。

密钥推导函数key derivation function

在密码学中,密钥推导函数(KDF)是一种密码学哈希函数,它使用伪随机函数从一个秘密值(如主密钥、密码或口令)中推导出一个或多个密钥。 KDF可用于将密钥拉伸成更长的密钥,或获得所需格式的密钥,例如将Diffie-Hellman密钥交换的结果转换为用于AES的对称密钥。

Password Hashing Competition

密码学虽然是研究密码的,但是其加密算法是越公开越好,只有公开才能去检视该算法的好坏,只有经过大家的彻底研究,才能够让该算法得以在业界使用和传播。

最出名的密码算法大赛肯定是由NIST在2001年为了指定标准的AES算法举办的大赛,该大赛的目的寻找最新的加密算法来替代老的DES算法。在这次大赛中,涌现了许多优秀的算法,包括CAST-256, CRYPTON, DEAL, DFC, E2, FROG, HPC, LOKI97, MAGENTA, MARS, RC6, Rijndael, SAFER+, Serpent, 和 Twofish等。最终Rijndael算法被选为最终的AES算法实现。

同样的PHC也是一个这样的算法比赛,和NIST举办的算法比赛不同的是,这是一个非官方的,由密码学家们组织的比赛。它是在由Jean-Philippe Aumasson于2012年秋季发起。

2013年第一季度,发布了征集意见书的通知,到2014年3月31日截止日期,共收到24份意见书。2014年12月,确定了9个入围名单。2015年7月,宣布Argon2为优胜者。

Argon2算法

Argon2 的设计很简单,旨在实现最高的内存填充率和对多个计算单元的有效利用,同时还能提供对 tradeoff attacks 的防御(通过利用处理器的缓存和内存)。

Argon2有三个变种。Argon2i、Argon2d和Argon2id。Argon2d速度更快,并且使用数据依赖的内存访问方式,这使得它对GPU破解攻击有很强的抵抗力,适合没有side-channel timing attacks威胁的应用(例如加密货币)。

Argon2i则使用数据无关的内存访问,这对于密码哈希和基于密码的密钥推导算法来说是首选,其特点是速度较慢,因为它在内存上运行了更多的处理逻辑,以防止 tradeoff attacks 。

Argon2id是Argon2i和Argon2d的混合体,采用数据依赖型和数据独立型内存访问相结合的方式,从而可以同时抵御side-channel timing attacks和GPU破解攻击的能力。

Argon2的输入参数

Argon2有两类输入参数,分别是primary inputs和secondary inputs。

primary inputs包括要加密的消息P和nonce S,分别代表password和salt。

P的长度是0到232-1字节,S的长度是8到232-1字节(如果是做密码hash,推荐16字节)。

之所以叫做primary inputs,是因为这两个参数是必须输入的。

剩下的参数叫做secondary inputs,他们包括:

  • 并行程度p,表示同时可以有多少独立的计算链同时运行,取值是1到224-1。
  • Tag长度 τ, 长度从4到232-1字节。‘
  • 内存大小 m, 单位是兆,值取 8p到232-1。
  • 迭代器的个数t,提升运行速度。取值1到232-1。
  • 版本号v,一个字节,取值0x13。
  • 安全值 K , 长度是0到232-1字节。
  • 附加数据 X,长度是0到232-1字节。
  • Argon2的类型,0代表Argon2d,1代表Argon2i,2代表Argon2id。

这些输入可以用下面的代码来表示:

   Inputs:password (P):       Bytes (0..232-1)    Password (or message) to be hashedsalt (S):           Bytes (8..232-1)    Salt (16 bytes recommended for password hashing)parallelism (p):    Number (1..224-1)   Degree of parallelism (i.e. number of threads)tagLength (T):      Number (4..232-1)   Desired number of returned bytesmemorySizeKB (m):   Number (8p..232-1)  Amount of memory (in kibibytes) to useiterations (t):     Number (1..232-1)   Number of iterations to performversion (v):        Number (0x13)       The current version is 0x13 (19 decimal)key (K):            Bytes (0..232-1)    Optional key (Errata: PDF says 0..32 bytes, RFC says 0..232 bytes)associatedData (X): Bytes (0..232-1)    Optional arbitrary extra datahashType (y):       Number (0=Argon2d, 1=Argon2i, 2=Argon2id)Output:tag:                Bytes (tagLength)   The resulting generated bytes, tagLength bytes long

处理流程

我们先来看一下非并行的Argon2的算法流程:

非并行的Argon2是最简单的。

上图中G表示的是一个压缩函数,接收两个1024byte的输入,输出一个1024byte。

i表示的是执行的步数,上面的φ(i) 就是输入,取自内存空间。

作为一个memory-hard的算法,一个很重要的工作就是构建初始内存。接下来,我们看一下如何构建初始内存空间。

首先,我们需要构建 H0 ,这是一个 64-byte 的block值,通过H0,可以去构建更多的block。计算H0的公式如下:

H0 = H(p,τ,m,t,v,y,⟨P⟩,P,⟨S⟩,S,⟨K⟩,K,⟨X⟩,X)

它是前面我们提到的输入参数的H函数。H0的大小是64byte。

看下H0的代码生成:

   Generate initial 64-byte block H0.All the input parameters are concatenated and input as a source of additional entropy.Errata: RFC says H0 is 64-bits; PDF says H0 is 64-bytes.Errata: RFC says the Hash is H^, the PDF says it's ℋ (but doesn't document what ℋ is). It's actually Blake2b.Variable length items are prepended with their length as 32-bit little-endian integers.buffer ← parallelism ∥ tagLength ∥ memorySizeKB ∥ iterations ∥ version ∥ hashType∥ Length(password)       ∥ Password∥ Length(salt)           ∥ salt∥ Length(key)            ∥ key∥ Length(associatedData) ∥ associatedDataH0 ← Blake2b(buffer, 64) //default hash size of Blake2b is 64-bytes

对于输入参数并行程度p来说,需要将内存分成一个内存矩阵B[i][j], 它是一个 p 行的矩阵。

计算矩阵B的值:

其中H′ 是一个基于H的变长hash算法。

我们给一下这个算法的实现:

Function Hash(message, digestSize)Inputs:message:         Bytes (0..232-1)     Message to be hasheddigestSize:      Integer (1..232)     Desired number of bytes to be returnedOutput:digest:          Bytes (digestSize)   The resulting generated bytes, digestSize bytes longHash is a variable-length hash function, built using Blake2b, capable of generatingdigests up to 232 bytes.If the requested digestSize is 64-bytes or lower, then we use Blake2b directlyif (digestSize <= 64) thenreturn Blake2b(digestSize ∥ message, digestSize) //concatenate 32-bit little endian digestSize with the message bytesFor desired hashes over 64-bytes (e.g. 1024 bytes for Argon2 blocks),we use Blake2b to generate twice the number of needed 64-byte blocks,and then only use 32-bytes from each blockCalculate the number of whole blocks (knowing we're only going to use 32-bytes from each)r ← Ceil(digestSize/32)-1;Generate r whole blocks.Initial block is generated from messageV1 ← Blake2b(digestSize ∥ message, 64);Subsequent blocks are generated from previous blocksfor i ← 2 to r doVi ← Blake2b(Vi-1, 64)Generate the final (possibly partial) blockpartialBytesNeeded ← digestSize – 32*r;Vr+1 ← Blake2b(Vr, partialBytesNeeded)Concatenate the first 32-bytes of each block Vi(except the possibly partial last block, which we take the whole thing)Let Ai represent the lower 32-bytes of block Vireturn A1 ∥ A2 ∥ ... ∥ Ar ∥ Vr+1

如果我们的迭代次数多于一次,也就是说t > 1, 我们这样计算下一次迭代的 B :

B t [ i ] [ 0 ] = G ( B t − 1 [ i ] [ q − 1 ] , B [ i ′ ] [ j ′ ] ) ⊕ B t − 1 [ i ] [ 0 ] B^{t}[i][0]=G\left(B^{t-1}[i][q-1], B\left[i^{\prime}\right]\left[j^{\prime}\right]\right) \oplus B^{t-1}[i][0] Bt[i][0]=G(Bt1[i][q1],B[i][j])Bt1[i][0]

B t [ i ] [ j ] = G ( B t [ i ] [ j − 1 ] , B [ i ′ ] [ j ′ ] ) ⊕ B t − 1 [ i ] [ j ] B^{t}[i][j]=G\left(B^{t}[i][j-1], B\left[i^{\prime}\right]\left[j^{\prime}\right]\right) \oplus B^{t-1}[i][j] Bt[i][j]=G(Bt[i][j1],B[i][j])Bt1[i][j]

最终遍历T次之后,我们得到最终的B :

B final  = B T [ 0 ] [ q − 1 ] ⊕ B T [ 1 ] [ q − 1 ] ⊕ ⋯ ⊕ B T [ p − 1 ] [ q − 1 ] B_{\text {final }}=B^{T}[0][q-1] \oplus B^{T}[1][q-1] \oplus \cdots \oplus B^{T}[p-1][q-1] Bfinal =BT[0][q1]BT[1][q1]BT[p1][q1]

最后得到输出:

T a g ← H ′ ( B final  ) \mathrm{Tag} \leftarrow H^{\prime}\left(B_{\text {final }}\right) TagH(Bfinal )

这段逻辑也可以用代码来表示:

   Calculate number of 1 KB blocks by rounding down memorySizeKB to the nearest multiple of 4*parallelism kibibytesblockCount ← Floor(memorySizeKB, 4*parallelism)Allocate two-dimensional array of 1 KiB blocks (parallelism rows x columnCount columns)columnCount ← blockCount / parallelism;   //In the RFC, columnCount is referred to as qCompute the first and second block (i.e. column zero and one ) of each lane (i.e. row)for i ← 0 to parallelism-1 do for each rowBi[0] ← Hash(H0 ∥ 0 ∥ i, 1024) //Generate a 1024-byte digestBi[1] ← Hash(H0 ∥ 1 ∥ i, 1024) //Generate a 1024-byte digestCompute remaining columns of each lanefor i ← 0 to parallelism-1 do //for each rowfor j ← 2 to columnCount-1 do //for each subsequent column//i' and j' indexes depend if it's Argon2i, Argon2d, or Argon2id (See section 3.4)i′, j′ ← GetBlockIndexes(i, j)  //the GetBlockIndexes function is not definedBi[j] = G(Bi[j-1], Bi′[j′]) //the G hash function is not definedFurther passes when iterations > 1for nIteration ← 2 to iterations dofor i ← 0 to parallelism-1 do for each rowfor j ← 0 to columnCount-1 do //for each subsequent column//i' and j' indexes depend if it's Argon2i, Argon2d, or Argon2id (See section 3.4)i′, j′ ← GetBlockIndexes(i, j)if j == 0 then Bi[0] = Bi[0] xor G(Bi[columnCount-1], Bi′[j′])elseBi[j] = Bi[j] xor G(Bi[j-1], Bi′[j′])Compute final block C as the XOR of the last column of each rowC ← B0[columnCount-1]for i ← 1 to parallelism-1 doC ← C xor Bi[columnCount-1]Compute output tagreturn Hash(C, tagLength)

本文已收录于 http://www.flydean.com/40-argon2/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

这篇关于密码学系列之:Argon2加密算法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/742605

相关文章

Mysql 中的多表连接和连接类型详解

《Mysql中的多表连接和连接类型详解》这篇文章详细介绍了MySQL中的多表连接及其各种类型,包括内连接、左连接、右连接、全外连接、自连接和交叉连接,通过这些连接方式,可以将分散在不同表中的相关数据... 目录什么是多表连接?1. 内连接(INNER JOIN)2. 左连接(LEFT JOIN 或 LEFT

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig

详解Java中的敏感信息处理

《详解Java中的敏感信息处理》平时开发中常常会遇到像用户的手机号、姓名、身份证等敏感信息需要处理,这篇文章主要为大家整理了一些常用的方法,希望对大家有所帮助... 目录前后端传输AES 对称加密RSA 非对称加密混合加密数据库加密MD5 + Salt/SHA + SaltAES 加密平时开发中遇到像用户的

Springboot使用RabbitMQ实现关闭超时订单(示例详解)

《Springboot使用RabbitMQ实现关闭超时订单(示例详解)》介绍了如何在SpringBoot项目中使用RabbitMQ实现订单的延时处理和超时关闭,通过配置RabbitMQ的交换机、队列和... 目录1.maven中引入rabbitmq的依赖:2.application.yml中进行rabbit

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

Python绘制土地利用和土地覆盖类型图示例详解

《Python绘制土地利用和土地覆盖类型图示例详解》本文介绍了如何使用Python绘制土地利用和土地覆盖类型图,并提供了详细的代码示例,通过安装所需的库,准备地理数据,使用geopandas和matp... 目录一、所需库的安装二、数据准备三、绘制土地利用和土地覆盖类型图四、代码解释五、其他可视化形式1.

SpringBoot使用Apache POI库读取Excel文件的操作详解

《SpringBoot使用ApachePOI库读取Excel文件的操作详解》在日常开发中,我们经常需要处理Excel文件中的数据,无论是从数据库导入数据、处理数据报表,还是批量生成数据,都可能会遇到... 目录项目背景依赖导入读取Excel模板的实现代码实现代码解析ExcelDemoInfoDTO 数据传输

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

使用Spring Cache时设置缓存键的注意事项详解

《使用SpringCache时设置缓存键的注意事项详解》在现代的Web应用中,缓存是提高系统性能和响应速度的重要手段之一,Spring框架提供了强大的缓存支持,通过​​@Cacheable​​、​​... 目录引言1. 缓存键的基本概念2. 默认缓存键生成器3. 自定义缓存键3.1 使用​​@Cacheab