netfilter_queue 使用示例

2024-02-24 04:18
文章标签 使用 示例 queue netfilter

本文主要是介绍netfilter_queue 使用示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 简介
  • 感谢
  • 环境依赖
  • 示例
  • 测试
    • 编译
    • 配置iptables规则
    • ping本机loopback地址
    • 启动nf-queue程序

简介

之前写过一篇文章《iptables queue 应用示例》,介绍使用libipq实现用户态数据包处理。最近有遇到国产麒麟系统不支持libipq的问题,好在还支持netfilter_queue,整理一个关于NFQUEUE的版本出来。

感谢

本文大部分内容参考_Raymond_的《netfilter_queue 总结》,作者对netfilter做了详细的介绍,原文链接:https://blog.csdn.net/weixin_43745072/article/details/110096900

环境依赖

需要安装libnetfilter_queue,libnetfilter_queue-devel,iptables,iptables-devel

yum install -y libnetfilter_queue libnetfilter_queue-devel iptables iptables-devel

示例

nf-queue.c

 /*     test.c      */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <netinet/in.h>
#include <linux/types.h>
#include <linux/netfilter.h>		/* for NF_ACCEPT */
#include <errno.h> 
#include <libnetfilter_queue/libnetfilter_queue.h>/* returns packet id */
static u_int32_t print_pkt (struct nfq_data *tb)
{int id = 0;struct nfqnl_msg_packet_hdr *ph;struct nfqnl_msg_packet_hw *hwph;u_int32_t mark,ifi; int ret;unsigned char *data;// 提取数据包头信息,包括id,协议和hook点信息ph = nfq_get_msg_packet_hdr(tb);if (ph) {id = ntohl(ph->packet_id);printf("hw_protocol=0x%04x hook=%u id=%u ",ntohs(ph->hw_protocol), ph->hook, id);}hwph = nfq_get_packet_hw(tb);if (hwph) {int i, hlen = ntohs(hwph->hw_addrlen); printf("hw_src_addr=");for (i = 0; i < hlen-1; i++)printf("%02x:", hwph->hw_addr[i]);printf("%02x ", hwph->hw_addr[hlen-1]);}mark = nfq_get_nfmark(tb);if (mark)printf("mark=%u ", mark); ifi = nfq_get_indev(tb);if (ifi)printf("indev=%u ", ifi); ifi = nfq_get_outdev(tb);if (ifi)printf("outdev=%u ", ifi);ifi = nfq_get_physindev(tb);if (ifi)printf("physindev=%u ", ifi); ifi = nfq_get_physoutdev(tb);if (ifi)printf("physoutdev=%u ", ifi);// 获取数据包载荷,data指针指向载荷,从实际的IP头开始ret = nfq_get_payload(tb, &data);if (ret >= 0)printf("payload_len=%d ", ret); fputc('\n', stdout); return id;
}static int cb(struct nfq_q_handle *qh, struct nfgenmsg *nfmsg,struct nfq_data *nfa, void *data)
{printf("entering callback\n");//进入到回调函数u_int32_t id = print_pkt(nfa);/*** 函数功能:对一个数据包发表裁决。* 函数参数:qh:通过调用nfq_create_queue()获得的Netfilter队列句柄。id:由netfilter分配给数据包的IDverdict:决定返回到netfilterdata_len: buf缓冲区的字节数buf:包含数据包数据的缓冲区* 函数返回值:出错返回-1,否则返回值大于等于0。*/return nfq_set_verdict(qh, id, NF_ACCEPT, 0, NULL);
}int main(int argc, char **argv)
{struct nfq_handle *h;struct nfq_q_handle *qh;struct nfnl_handle *nh;int fd;int rv;char buf[4096] __attribute__ ((aligned)); printf("opening library handle\n");h = nfq_open();//创建 netfilter_queueif (!h) {//创建失败fprintf(stderr, "error during nfq_open()\n");exit(1);} printf("unbinding existing nf_queue handler for AF_INET (if any)\n");//解绑已经存在的队列if (nfq_unbind_pf(h, AF_INET) < 0) {fprintf(stderr, "error during nfq_unbind_pf()\n");exit(1);} printf("binding nfnetlink_queue as nf_queue handler for AF_INET\n");//绑定上我们创建的队列if (nfq_bind_pf(h, AF_INET) < 0) {fprintf(stderr, "error during nfq_bind_pf()\n");exit(1);} printf("binding this socket to queue '0'\n");//cb是回调函数qh = nfq_create_queue(h,  0, &cb, NULL);if (!qh) {fprintf(stderr, "error during nfq_create_queue()\n");exit(1);} printf("setting copy_packet mode\n");if (nfq_set_mode(qh, NFQNL_COPY_PACKET, 0xffff) < 0) {//设置的包处理模式fprintf(stderr, "can't set packet_copy mode\n");exit(1);} fd = nfq_fd(h); for (;;) {if ((rv = recv(fd, buf, sizeof(buf), 0)) >= 0) {printf("pkt received\n");nfq_handle_packet(h, buf, rv);continue;}/* if your application is too slow to digest the packets that* are sent from kernel-space, the socket buffer that we use* to enqueue packets may fill up returning ENOBUFS. Depending* on your application, this error may be ignored. Please, see* the doxygen documentation of this library on how to improve* this situation.*/if (rv < 0 && errno == ENOBUFS) {printf("losing packets!\n");continue;}perror("recv failed");break;} printf("unbinding from queue 0\n");nfq_destroy_queue(qh);//摧毁队列,退出 #ifdef INSANE/* normally, applications SHOULD NOT issue this command, since* it detaches other programs/sockets from AF_INET, too ! */printf("unbinding from AF_INET\n");nfq_unbind_pf(h, AF_INET);
#endif printf("closing library handle\n");nfq_close(h); exit(0);
}
  • nfq_open():打开一个nfqueue的句柄。
struct nfq_handle *nfq_open(void);

参数
return:生成的句柄

  • nfq_close():关闭nfq_open()创建的句柄。
int nfq_close(struct nfq_handle *h);

参数
h:nfq_open()创建的句柄
return: 0 成功,非0失败

  • nfq_unbind_pf() 将给定队列连接句柄与处理中的属于某个特定协议家族的数据包解除绑定。
int nfq_unbind_pf(struct nfq_handle *h, uint16_t pf);

参数
h:nfq_open()创建的句柄
pf:将被解绑的协议家族
return:0 成功,非0失败

  • nfq_unbind_pf() 将给定队列连接句柄与处理中的属于某个特定协议家族的数据包进行绑定。
int nfq_bind_pf(struct nfq_handle *h, uint16_t pf);

参数:
h:nfq_open()创建的句柄
pf:将被绑定的协议家族
return:0 成功,非0失败

  • nfq_create_queue()
struct nfq_q_handle *nfq_create_queue(struct nfq_handle *h, uint16_t num, nfq_callback *cb, void *data);

参数:
h:nfq_open()创建的句柄
num带绑定的队列的编号
cb: 回调函数
data:传递给回调函数的参数
return:一个新创建的nfq_q_handle的指针

  • nfq_set_mode() 复制到用户的方式,丢弃,复制元数据,复制整个数据包
int nfq_set_mode(struct nfq_q_handle *qh, uint8_t mode, uint32_t range);

参数:
qh:nfq_create_queue()创建的句柄。
mode想要使用数据包的模式
NFQNL_COPY_NONE- 丢弃
NFQNL_COPY_META- 复制元数据
NFQNL_COPY_PACKET- 复制整个数据包
range:我们期望得到的数据包的大小
return: -1失败,>0其他情况。

  • nfq_fd()得到nfqueue句柄相关的文件描述符。
int nfq_fd(struct nfq_handle *h);

参数:
h:nfq_open()获得的句柄
return:与nfqueue句柄相关的文件描述符。

  • nfq_handle_packet() 处理从nfqueue子系统收到的数据包
int nfq_handle_packet(struct nfq_handle *h, char *buf, int len);

参数
h:nfq_open()获得的数据包
buf:传递给回调函数的数据
len:buf中packet数据的大小

  • nfq_destroy_queue() 摧毁nfq_create_queue()创建的队列。摧毁的同时会自动解绑,所以不需要调用nfq_unbind_pf()
int nfq_destroy_queue(struct nfq_q_handle *qh);

参数:
qh:被摧毁的nfq_create_queue()句柄
return:

  • nfq_get_msg_packet_hdr() 解析消息的函数,返回包装数据的头部部分。
struct nfqnl_msg_packet_hdr *nfq_get_msg_packet_hdr(struct nfq_data *nfad);

参数:
nfq_data:将要传递给回调函数的Netlink数据包的句柄

struct nfqnl_msg_packet_hdr {uint32_t	packet_id;	// 数据包在队列中的唯一id标志符uint16_t	hw_protocol;	// hw协议uint8_t		hook;		// netfilter 钩子} __attribute__ ((packed));
  • get hardware address() 获得硬件地址
struct nfqnl_msg_packet_hw *nfq_get_packet_hw(struct nfq_data *nfad);

参数:
nfad:将要传递给回调函数的Netlink数据包的句柄
return:硬件地址。在以太网中就是MAC地址。 直到POSTROUTING和成功的ARP请求之后,才知道目标MAC地址,因此当前无法获得。

  • nfq_get_nfmark() 获得数据包的标志
uint32_t nfq_get_nfmark(struct nfq_data *nfad);

参数:
nfad:将要传递给回调函数的Netlink数据包
return:分配给这个数据包的标志

  • nfq_get_indev() 获取接受数据包的索引信息。
uint32_t nfq_get_indev(struct nfq_data *nfad);

参数:
nfad:将要传递给回调函数的Netlink数据包
return:接收排队数据包的设备的索引。 如果返回的索引为0,则说明该数据包是在本地生成的,或者输入接口未知(即OSTROUTING未知)。

  • nfq_get_outdev() 获取接受数据包的索引信息。
uint32_t nfq_get_outdev(struct nfq_data *nfad);

参数:
nfad:将要传递给回调函数的Netlink数据包
return:排队的数据包将被发送出去的设备的索引。 如果返回的索引为0,则该数据包将发送到本机或尚不知道输出接口(即REROUTING未知)。

  • nfq_get_physindev() 获取接受的数据包的物理层接口信息。
uint32_t nfq_get_physindev(struct nfq_data *nfad);

参数:
nfad:将要传递给回调函数的Netlink数据包
return:接收排队数据包的物理设备的索引。 如果返回的索引为0,则说明该数据包是在本地生成的,或者输入接口未知(即OSTROUTING未知)。

  • nfq_get_outdev() 获取即将发送的数据包的物理层接口信息。
uint32_t nfq_get_outdev(struct nfq_data *nfad);

参数:
nfad:将要传递给回调函数的Netlink数据包
return:将要发送的排队数据包的物理设备的索引。 如果返回的索引为0,则说明该数据包将发往本机,或者输入接口未知(即OSTROUTING未知)。

  • nfq_get_payload() 获取有效载荷
int nfq_get_payload(struct nfq_data *nfad, unsigned char **data);

参数:

nfad:将要传递给回调函数的Netlink数据包
data:指向payload的指针的指针
return: -1错误,其余情况>0

  • nfq_set_verdict()
int nfq_set_verdict(struct nfq_q_handle *qh, uint32_t id, uint32_t verdict, uint32_t data_len, const unsigned char *buf)

参数:
qh:nfq_create_queue()创建的句柄。
id:唯一标志符
verdict: 对数据包操作的办法,主要有如下几种:

  1. NF_DROP: 丢弃该报文,释放所有与该报文相关的资源;
  2. NF_ACCEPT: 接受该报文,并继续处理;
  3. NF_STOLEN: 该报文已经被HOOK函数接管,协议栈无须继续处理;
  4. NF_QUEUE: 将该报文传递到用户态去做进一步的处理;
  5. NF_REPEAT: 再次调用本HOOK函数。
  6. NF_STOP : 与NF_ACCEPT类似但强于NF_ACCEPT,一旦挂接链表中某个hook节点返回NF_STOP,该skb包就立即结束检查而接受,不再进入链表中后续的hook节点,而NF_ACCEPT则还需要进入后续hook点检查。

data_len:数据长度
buf:数据

测试

编译

gcc -o nf-queue nf-queue.c -lnetfilter_queue

配置iptables规则

在用户态对数据包进行处理,需要配置iptables规则,将符合条件的数据包转到netfilter提供的queue中。

ip6tables -I INPUT -p icmpv6 --icmpv6-type 128 -m length --length :1280 -j NFQUEUE --queue-num 0

ping本机loopback地址

ping6 -s 1120 fe80::8261:5fff:fe03:fd3d%lo

此时没有数据包回复
在这里插入图片描述

启动nf-queue程序

./nf-queue 

此时ping包能够收到回复数据
在这里插入图片描述

这篇关于netfilter_queue 使用示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/740923

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念