Python超参数自动搜索模块GridSearchCV上手

2024-02-23 11:48

本文主要是介绍Python超参数自动搜索模块GridSearchCV上手,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 引言

当我们跑机器学习程序时,尤其是调节网络参数时,通常待调节的参数有很多,参数之间的组合更是繁复。依照注意力>时间>金钱的原则,人力手动调节注意力成本太高,非常不值得。For循环或类似于for循环的方法受限于太过分明的层次,不够简洁与灵活,注意力成本高,易出错。本文介绍sklearn模块的GridSearchCV模块,能够在指定的范围内自动搜索具有不同超参数的不同模型组合,有效解放注意力。但是GridSearchCV模块只能应对小数据集,如果是大数据集,那么调用此模块就不太合适,需要另想办法来调参。

2. GridSearchCV模块简介

这个模块是sklearn模块的子模块,导入方法非常简单

from sklearn.model_selection import GridSearchCV

函数原型:

class sklearn.model_selection.GridSearchCV(estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise', return_train_score=True)

其中cv可以是整数或者交叉验证生成器或一个可迭代器,cv参数对应的4种输入列举如下:

  1. None:默认参数,函数会使用默认的3折交叉验证
  2. 整数k:k折交叉验证。对于分类任务,使用StratifiedKFold(类别平衡,每类的训练集占比一样多,具体可以查看官方文档)。对于其他任务,使用KFold
  3. 交叉验证生成器:得自己写生成器,头疼,略
  4. 可以生成训练集与测试集的迭代器:同上,略

3. 分析结果自动保存

逗号分隔值(Comma-Separated Values,CSV,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本)。纯文本意味着该文件是一个,不含必须像二进制数字那样被解读的数据。CSV文件由任意数目的记录组成,记录间以某种换行符分隔;每条记录由字段组成,字段间的分隔符是其它字符或字符串,最常见的是逗号或制表符。通常,所有记录都有完全相同的字段序列。

CSV文件有个突出的优点,可以用excel等软件打开,比起记事本和matlab、python等编程语言界面,便于查看、制作报告、后期整理等。

GridSearchCV模块中,不同超参数的组合方式及其计算结果以字典的形式保存在 clf.cv_results_中,python的pandas模块提供了高效整理数据的方法,只需要3行代码即可解决问题。

cv_result = pd.DataFrame.from_dict(clf.cv_results_)
with open('cv_result.csv','w') as f:cv_result.to_csv(f)

4. 完整例程

代码清晰易懂,无须解释。https://github.com/JiJingYu/tensorflow-exercise/tree/master/svm_grid_search

复制代码
 1 import pandas as pd
 2 from sklearn import svm, datasets
 3 from sklearn.model_selection import GridSearchCV
 4 from sklearn.metrics import classification_report
 5 
 6 iris = datasets.load_iris()
 7 parameters = {'kernel':('linear', 'rbf'), 'C':[1, 2, 4], 'gamma':[0.125, 0.25, 0.5 ,1, 2, 4]}  #kernel为核函数,有线性和rbf两种;C有1,2和4三种取值范围;gamma有0.125,0.25,0.5,1,2和4共6种取值;根据排列组合,这三个参数共有36种特征组合方式
 8 svr = svm.SVC()
 9 clf = GridSearchCV(svr, parameters, n_jobs=-1)
10 clf.fit(iris.data, iris.target)
11 cv_result = pd.DataFrame.from_dict(clf.cv_results_)
12 with open('cv_result.csv','w') as f:
13     cv_result.to_csv(f)         #结果集,一共有36种特征组合方式的结果
14     
15 print('The parameters of the best model are: ')
16 print(clf.best_params_)
17 
18 y_pred = clf.predict(iris.data)
19 print(classification_report(y_true=iris.target, y_pred=y_pred))
复制代码

最佳的参数组合为:{'kernel': 'linear', 'C': 2, 'gamma': 0.125}

最佳的模型为:SVC(C=2, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma=0.125, kernel='linear',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)

5. 相关资料

  1. sklearn.model_selection.GridSearchCV模块主页: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
  2. pandas.DataFrame模块主页:http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
  3. 本文例程 https://github.com/JiJingYu/tensorflow-exercise/tree/master/svm_grid_search


这篇关于Python超参数自动搜索模块GridSearchCV上手的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/738527

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

4B参数秒杀GPT-3.5:MiniCPM 3.0惊艳登场!

​ 面壁智能 在 AI 的世界里,总有那么几个时刻让人惊叹不已。面壁智能推出的 MiniCPM 3.0,这个仅有4B参数的"小钢炮",正在以惊人的实力挑战着 GPT-3.5 这个曾经的AI巨人。 MiniCPM 3.0 MiniCPM 3.0 MiniCPM 3.0 目前的主要功能有: 长上下文功能:原生支持 32k 上下文长度,性能完美。我们引入了