Python超参数自动搜索模块GridSearchCV上手

2024-02-23 11:48

本文主要是介绍Python超参数自动搜索模块GridSearchCV上手,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 引言

当我们跑机器学习程序时,尤其是调节网络参数时,通常待调节的参数有很多,参数之间的组合更是繁复。依照注意力>时间>金钱的原则,人力手动调节注意力成本太高,非常不值得。For循环或类似于for循环的方法受限于太过分明的层次,不够简洁与灵活,注意力成本高,易出错。本文介绍sklearn模块的GridSearchCV模块,能够在指定的范围内自动搜索具有不同超参数的不同模型组合,有效解放注意力。但是GridSearchCV模块只能应对小数据集,如果是大数据集,那么调用此模块就不太合适,需要另想办法来调参。

2. GridSearchCV模块简介

这个模块是sklearn模块的子模块,导入方法非常简单

from sklearn.model_selection import GridSearchCV

函数原型:

class sklearn.model_selection.GridSearchCV(estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise', return_train_score=True)

其中cv可以是整数或者交叉验证生成器或一个可迭代器,cv参数对应的4种输入列举如下:

  1. None:默认参数,函数会使用默认的3折交叉验证
  2. 整数k:k折交叉验证。对于分类任务,使用StratifiedKFold(类别平衡,每类的训练集占比一样多,具体可以查看官方文档)。对于其他任务,使用KFold
  3. 交叉验证生成器:得自己写生成器,头疼,略
  4. 可以生成训练集与测试集的迭代器:同上,略

3. 分析结果自动保存

逗号分隔值(Comma-Separated Values,CSV,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本)。纯文本意味着该文件是一个,不含必须像二进制数字那样被解读的数据。CSV文件由任意数目的记录组成,记录间以某种换行符分隔;每条记录由字段组成,字段间的分隔符是其它字符或字符串,最常见的是逗号或制表符。通常,所有记录都有完全相同的字段序列。

CSV文件有个突出的优点,可以用excel等软件打开,比起记事本和matlab、python等编程语言界面,便于查看、制作报告、后期整理等。

GridSearchCV模块中,不同超参数的组合方式及其计算结果以字典的形式保存在 clf.cv_results_中,python的pandas模块提供了高效整理数据的方法,只需要3行代码即可解决问题。

cv_result = pd.DataFrame.from_dict(clf.cv_results_)
with open('cv_result.csv','w') as f:cv_result.to_csv(f)

4. 完整例程

代码清晰易懂,无须解释。https://github.com/JiJingYu/tensorflow-exercise/tree/master/svm_grid_search

复制代码
 1 import pandas as pd
 2 from sklearn import svm, datasets
 3 from sklearn.model_selection import GridSearchCV
 4 from sklearn.metrics import classification_report
 5 
 6 iris = datasets.load_iris()
 7 parameters = {'kernel':('linear', 'rbf'), 'C':[1, 2, 4], 'gamma':[0.125, 0.25, 0.5 ,1, 2, 4]}  #kernel为核函数,有线性和rbf两种;C有1,2和4三种取值范围;gamma有0.125,0.25,0.5,1,2和4共6种取值;根据排列组合,这三个参数共有36种特征组合方式
 8 svr = svm.SVC()
 9 clf = GridSearchCV(svr, parameters, n_jobs=-1)
10 clf.fit(iris.data, iris.target)
11 cv_result = pd.DataFrame.from_dict(clf.cv_results_)
12 with open('cv_result.csv','w') as f:
13     cv_result.to_csv(f)         #结果集,一共有36种特征组合方式的结果
14     
15 print('The parameters of the best model are: ')
16 print(clf.best_params_)
17 
18 y_pred = clf.predict(iris.data)
19 print(classification_report(y_true=iris.target, y_pred=y_pred))
复制代码

最佳的参数组合为:{'kernel': 'linear', 'C': 2, 'gamma': 0.125}

最佳的模型为:SVC(C=2, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma=0.125, kernel='linear',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)

5. 相关资料

  1. sklearn.model_selection.GridSearchCV模块主页: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
  2. pandas.DataFrame模块主页:http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
  3. 本文例程 https://github.com/JiJingYu/tensorflow-exercise/tree/master/svm_grid_search


这篇关于Python超参数自动搜索模块GridSearchCV上手的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/738527

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

SpringBoot中封装Cors自动配置方式

《SpringBoot中封装Cors自动配置方式》:本文主要介绍SpringBoot中封装Cors自动配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot封装Cors自动配置背景实现步骤1. 创建 GlobalCorsProperties

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调