Spark中写parquet文件是怎么实现的

2024-02-23 04:44

本文主要是介绍Spark中写parquet文件是怎么实现的,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

本文基于 Spark 3.5.0
写本篇文章的目的是在于能够配合spark.sql.maxConcurrentOutputFileWriters参数来加速写parquet文件的速度,为此研究一下Spark写parquet的时候会占用内存的大小,便于配置spark.sql.maxConcurrentOutputFileWriters的值,从而保证任务的稳定性

结论

一个spark parquet writer可能会占用128MB的内存(也就是parquet.block.size的大小)。 所有在调整spark.sql.maxConcurrentOutputFileWriters的时候得注意不能调整过大,否则会导致OOM,但是如果在最后写文件的时候加入合并小文件的功能(AQE+Rebalance的方式),也可以适当的调整大一点,因为这个时候的Task 不像没有shuffle一样,可能还会涉及到sort以及aggregate等消耗内存的操作,(这个时候就是一个task纯写parquet文件)
大家也可以参考Parquet文件是怎么被写入的-Row Groups,Pages,需要的内存,以及flush操作

分析

还是得从InsertIntoHadoopFsRelationCommand类中说起,涉及到写parquet的数据流如下:

InsertIntoHadoopFsRelationCommand.run||\/
FileFormatWriter.write||\/
fileFormat.prepareWrite||\/
executeWrite => planForWrites.executeWrite ||\/WriteFilesExec.doExecuteWrite||\/FileFormatWriter.executeTask||\/dataWriter.writeWithIterator||\/dataWriter.writeWithMetrics||\/DynamicPartitionDataConcurrentWriter.write||\/writeRecord||\/ParquetOutputWriter.write||\/recordWriter.write
  • 其中fileFormat.prepareWrite 涉及到 spark这一层级有关parquet的设置,并返回一个生成ParquetOutputWriter实例的工厂类实例OutputWriterFactory
    主要设置如 parquet.compression 压缩格式,一般是 zstd ,也可以通过 spark.sql.parquet.compression.codec设置
    parquet.write.support.classParquetWriteSupport,该类的作用为Spark把内部IternalRow转为parquet message

  • DynamicPartitionDataConcurrentWriter.write 涉及到了InternalRowUnsafeRow代码生成
    这里不讨论这部分的细节,只说一下getPartitionValuesrenewCurrentWriter 方法中的 getPartitionPath这两部分

    • getPartitionValues
      这个是InternalRow => UnsafeRow转换,为什么这么做,是因为对于UnsafeRow这种数据结构来说,能够很好管理内存和避免GC问题

          val proj = UnsafeProjection.create(description.partitionColumns, description.allColumns)row => proj(row)
      

      我们以UnsafeProjection的子类InterpretedUnsafeProjection,该类不是代码生成的类(这样便于分析),

        override def apply(row: InternalRow): UnsafeRow = {if (subExprEliminationEnabled) {runtime.setInput(row)}// Put the expression results in the intermediate row.var i = 0while (i < numFields) {values(i) = exprs(i).eval(row)i += 1}// Write the intermediate row to an unsafe row.rowWriter.reset()writer(intermediate)rowWriter.getRow()}
      
      • 首先是消除公共子表达式
      • 用values数组保存每个表达式计算出来的结果
      • rowWriter.reset() 用来对齐cursor,便于对于String类型的写入,这可以参考UnsafeRow内存布局和代码优化
      • unsafeWriter按照不同的类型写入到unsaferow不同的位置上去,这里的offset在cursor的内部的,也就是说cursor的值要大于offset
      • 返回UnsafeRow类型
        通过这种方式完成了InternalRow => UnsafeRow转换
    • getPartitionPath
      这个是通过表达式的方式获取partition的函数,从而完成InternalRow => String的转换,涉及的代码如下:

        private lazy val partitionPathExpression: Expression = Concat(description.partitionColumns.zipWithIndex.flatMap { case (c, i) =>val partitionName = ScalaUDF(ExternalCatalogUtils.getPartitionPathString _,StringType,Seq(Literal(c.name), Cast(c, StringType, Option(description.timeZoneId))))if (i == 0) Seq(partitionName) else Seq(Literal(Path.SEPARATOR), partitionName)})private lazy val getPartitionPath: InternalRow => String = {val proj = UnsafeProjection.create(Seq(partitionPathExpression), description.partitionColumns)row => proj(row).getString(0)}
      

      UnsafeProjection.create 上面已经说了怎么实现的了,重点说partitionPathExpression 生成partition的表达式,
      该表达式主要通过UDF中getPartitionPathString来生成,关键的一点是,传入的参数:Literal(c.name)和Cast(c, StringType, Option(description.timeZoneId))))
      这里的Literal(c.name)表示的是partition名字的常量
      Cast(c, StringType, Option(description.timeZoneId)))表示的是c这个变量所代表的值,
      为什么这么说,因为在ScalaUDF的内部计算方法中有:

        override def eval(input: InternalRow): Any = {val result = try {f(input)} catch {case e: Exception =>throw QueryExecutionErrors.failedExecuteUserDefinedFunctionError(functionName, inputTypesString, outputType, e)}resultConverter(result)}

      这里的f中会对传入的每个参数都会调用eval(InernalRow),对于Literal来说就是常亮,而对于Cast(Attribute)来说就是属性的值(通过BindReferences.bindReference方法)。

  • recordWriter.write涉及到 ParquetOutputFormat.getRecordWriter方法,该方法中涉及到parquet中的一些原生参数设置:

public RecordWriter<Void, T> getRecordWriter(Configuration conf, Path file, CompressionCodecName codec, Mode mode)throws IOException, InterruptedException {final WriteSupport<T> writeSupport = getWriteSupport(conf);ParquetProperties.Builder propsBuilder = ParquetProperties.builder().withPageSize(getPageSize(conf)).withDictionaryPageSize(getDictionaryPageSize(conf)).withDictionaryEncoding(getEnableDictionary(conf)).withWriterVersion(getWriterVersion(conf)).estimateRowCountForPageSizeCheck(getEstimatePageSizeCheck(conf)).withMinRowCountForPageSizeCheck(getMinRowCountForPageSizeCheck(conf)).withMaxRowCountForPageSizeCheck(getMaxRowCountForPageSizeCheck(conf)).withColumnIndexTruncateLength(getColumnIndexTruncateLength(conf)).withStatisticsTruncateLength(getStatisticsTruncateLength(conf)).withMaxBloomFilterBytes(getBloomFilterMaxBytes(conf)).withBloomFilterEnabled(getBloomFilterEnabled(conf)).withPageRowCountLimit(getPageRowCountLimit(conf)).withPageWriteChecksumEnabled(getPageWriteChecksumEnabled(conf));new ColumnConfigParser().withColumnConfig(ENABLE_DICTIONARY, key -> conf.getBoolean(key, false), propsBuilder::withDictionaryEncoding).withColumnConfig(BLOOM_FILTER_ENABLED, key -> conf.getBoolean(key, false),propsBuilder::withBloomFilterEnabled).withColumnConfig(BLOOM_FILTER_EXPECTED_NDV, key -> conf.getLong(key, -1L), propsBuilder::withBloomFilterNDV).withColumnConfig(BLOOM_FILTER_FPP, key -> conf.getDouble(key, ParquetProperties.DEFAULT_BLOOM_FILTER_FPP),propsBuilder::withBloomFilterFPP).parseConfig(conf);ParquetProperties props = propsBuilder.build();long blockSize = getLongBlockSize(conf);int maxPaddingSize = getMaxPaddingSize(conf);boolean validating = getValidation(conf);...WriteContext fileWriteContext = writeSupport.init(conf);FileEncryptionProperties encryptionProperties = createEncryptionProperties(conf, file, fileWriteContext);ParquetFileWriter w = new ParquetFileWriter(HadoopOutputFile.fromPath(file, conf),fileWriteContext.getSchema(), mode, blockSize, maxPaddingSize, props.getColumnIndexTruncateLength(),props.getStatisticsTruncateLength(), props.getPageWriteChecksumEnabled(), encryptionProperties);w.start();...return new ParquetRecordWriter<T>(w,writeSupport,fileWriteContext.getSchema(),fileWriteContext.getExtraMetaData(),blockSize,codec,validating,props,memoryManager,conf);}

这里涉及到的关键的几个参数是:

   parquet.page.size                   1*1024*1024         -- page的大小 默认是 1MBparquet.block.size                  128*1024*1024       -- rowgroup的大小 默认是 128MBparquet.page.size.row.check.min     100                 -- page检查是否达到page size的最小行数parquet.page.size.row.check.max     10000               -- page检查是否达到page size的最大行数parquet.page.row.count.limit        20_000              -- page检查是否达到page size的行数极限行数

parquet.page.size.row.check.min parquet.page.size.row.check.max parquet.page.row.count.limit 这三个配置项存在着相互制约的关系,总的目标就是检查当行数达到了一定的阈值以后,来检查是否能够flush到内存page中,具体的可以查看ColumnWriteStoreBase类中的方法

接下来就是真正写操作了,调用的是InternalParquetRecordWriter.write方法,如下:

 private void initStore() {ColumnChunkPageWriteStore columnChunkPageWriteStore = new ColumnChunkPageWriteStore(compressor,schema, props.getAllocator(), props.getColumnIndexTruncateLength(), props.getPageWriteChecksumEnabled(),fileEncryptor, rowGroupOrdinal);pageStore = columnChunkPageWriteStore;bloomFilterWriteStore = columnChunkPageWriteStore;columnStore = props.newColumnWriteStore(schema, pageStore, bloomFilterWriteStore);MessageColumnIO columnIO = new ColumnIOFactory(validating).getColumnIO(schema);this.recordConsumer = columnIO.getRecordWriter(columnStore);writeSupport.prepareForWrite(recordConsumer);}public void write(T value) throws IOException, InterruptedException {writeSupport.write(value);++ recordCount;checkBlockSizeReached();}

initStore主要是初始化 pageStorecolumnStore
具体的spark interalRow怎么转换为parquet message,主要在writeSupport.write中的rootFieldWriters
接下来就是checkBlockSizeReached,这里主要就是flush rowgroup到磁盘了,
具体的读者可以看代码:
对于flush到page可以看checkBlockSizeReached中columnStore.flush()
对于flush rowroup到磁盘可以看checkBlockSizeReached中pageStore.flushToFileWriter(parquetFileWriter)
总结出来就是 一个spark parquet writer可能会占用128MB的内存(也就是parquet.block.size的大小),
因为只有在满足了rowgroup的大小以后,才会真正的flush到磁盘。

这篇关于Spark中写parquet文件是怎么实现的的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/737551

相关文章

电脑密码怎么设置? 一文读懂电脑密码的详细指南

《电脑密码怎么设置?一文读懂电脑密码的详细指南》为了保护个人隐私和数据安全,设置电脑密码显得尤为重要,那么,如何在电脑上设置密码呢?详细请看下文介绍... 设置电脑密码是保护个人隐私、数据安全以及系统安全的重要措施,下面以Windows 11系统为例,跟大家分享一下设置电脑密码的具体办php法。Windo

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

Java中List转Map的几种具体实现方式和特点

《Java中List转Map的几种具体实现方式和特点》:本文主要介绍几种常用的List转Map的方式,包括使用for循环遍历、Java8StreamAPI、ApacheCommonsCollect... 目录前言1、使用for循环遍历:2、Java8 Stream API:3、Apache Commons

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端