Spark中写parquet文件是怎么实现的

2024-02-23 04:44

本文主要是介绍Spark中写parquet文件是怎么实现的,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

本文基于 Spark 3.5.0
写本篇文章的目的是在于能够配合spark.sql.maxConcurrentOutputFileWriters参数来加速写parquet文件的速度,为此研究一下Spark写parquet的时候会占用内存的大小,便于配置spark.sql.maxConcurrentOutputFileWriters的值,从而保证任务的稳定性

结论

一个spark parquet writer可能会占用128MB的内存(也就是parquet.block.size的大小)。 所有在调整spark.sql.maxConcurrentOutputFileWriters的时候得注意不能调整过大,否则会导致OOM,但是如果在最后写文件的时候加入合并小文件的功能(AQE+Rebalance的方式),也可以适当的调整大一点,因为这个时候的Task 不像没有shuffle一样,可能还会涉及到sort以及aggregate等消耗内存的操作,(这个时候就是一个task纯写parquet文件)
大家也可以参考Parquet文件是怎么被写入的-Row Groups,Pages,需要的内存,以及flush操作

分析

还是得从InsertIntoHadoopFsRelationCommand类中说起,涉及到写parquet的数据流如下:

InsertIntoHadoopFsRelationCommand.run||\/
FileFormatWriter.write||\/
fileFormat.prepareWrite||\/
executeWrite => planForWrites.executeWrite ||\/WriteFilesExec.doExecuteWrite||\/FileFormatWriter.executeTask||\/dataWriter.writeWithIterator||\/dataWriter.writeWithMetrics||\/DynamicPartitionDataConcurrentWriter.write||\/writeRecord||\/ParquetOutputWriter.write||\/recordWriter.write
  • 其中fileFormat.prepareWrite 涉及到 spark这一层级有关parquet的设置,并返回一个生成ParquetOutputWriter实例的工厂类实例OutputWriterFactory
    主要设置如 parquet.compression 压缩格式,一般是 zstd ,也可以通过 spark.sql.parquet.compression.codec设置
    parquet.write.support.classParquetWriteSupport,该类的作用为Spark把内部IternalRow转为parquet message

  • DynamicPartitionDataConcurrentWriter.write 涉及到了InternalRowUnsafeRow代码生成
    这里不讨论这部分的细节,只说一下getPartitionValuesrenewCurrentWriter 方法中的 getPartitionPath这两部分

    • getPartitionValues
      这个是InternalRow => UnsafeRow转换,为什么这么做,是因为对于UnsafeRow这种数据结构来说,能够很好管理内存和避免GC问题

          val proj = UnsafeProjection.create(description.partitionColumns, description.allColumns)row => proj(row)
      

      我们以UnsafeProjection的子类InterpretedUnsafeProjection,该类不是代码生成的类(这样便于分析),

        override def apply(row: InternalRow): UnsafeRow = {if (subExprEliminationEnabled) {runtime.setInput(row)}// Put the expression results in the intermediate row.var i = 0while (i < numFields) {values(i) = exprs(i).eval(row)i += 1}// Write the intermediate row to an unsafe row.rowWriter.reset()writer(intermediate)rowWriter.getRow()}
      
      • 首先是消除公共子表达式
      • 用values数组保存每个表达式计算出来的结果
      • rowWriter.reset() 用来对齐cursor,便于对于String类型的写入,这可以参考UnsafeRow内存布局和代码优化
      • unsafeWriter按照不同的类型写入到unsaferow不同的位置上去,这里的offset在cursor的内部的,也就是说cursor的值要大于offset
      • 返回UnsafeRow类型
        通过这种方式完成了InternalRow => UnsafeRow转换
    • getPartitionPath
      这个是通过表达式的方式获取partition的函数,从而完成InternalRow => String的转换,涉及的代码如下:

        private lazy val partitionPathExpression: Expression = Concat(description.partitionColumns.zipWithIndex.flatMap { case (c, i) =>val partitionName = ScalaUDF(ExternalCatalogUtils.getPartitionPathString _,StringType,Seq(Literal(c.name), Cast(c, StringType, Option(description.timeZoneId))))if (i == 0) Seq(partitionName) else Seq(Literal(Path.SEPARATOR), partitionName)})private lazy val getPartitionPath: InternalRow => String = {val proj = UnsafeProjection.create(Seq(partitionPathExpression), description.partitionColumns)row => proj(row).getString(0)}
      

      UnsafeProjection.create 上面已经说了怎么实现的了,重点说partitionPathExpression 生成partition的表达式,
      该表达式主要通过UDF中getPartitionPathString来生成,关键的一点是,传入的参数:Literal(c.name)和Cast(c, StringType, Option(description.timeZoneId))))
      这里的Literal(c.name)表示的是partition名字的常量
      Cast(c, StringType, Option(description.timeZoneId)))表示的是c这个变量所代表的值,
      为什么这么说,因为在ScalaUDF的内部计算方法中有:

        override def eval(input: InternalRow): Any = {val result = try {f(input)} catch {case e: Exception =>throw QueryExecutionErrors.failedExecuteUserDefinedFunctionError(functionName, inputTypesString, outputType, e)}resultConverter(result)}

      这里的f中会对传入的每个参数都会调用eval(InernalRow),对于Literal来说就是常亮,而对于Cast(Attribute)来说就是属性的值(通过BindReferences.bindReference方法)。

  • recordWriter.write涉及到 ParquetOutputFormat.getRecordWriter方法,该方法中涉及到parquet中的一些原生参数设置:

public RecordWriter<Void, T> getRecordWriter(Configuration conf, Path file, CompressionCodecName codec, Mode mode)throws IOException, InterruptedException {final WriteSupport<T> writeSupport = getWriteSupport(conf);ParquetProperties.Builder propsBuilder = ParquetProperties.builder().withPageSize(getPageSize(conf)).withDictionaryPageSize(getDictionaryPageSize(conf)).withDictionaryEncoding(getEnableDictionary(conf)).withWriterVersion(getWriterVersion(conf)).estimateRowCountForPageSizeCheck(getEstimatePageSizeCheck(conf)).withMinRowCountForPageSizeCheck(getMinRowCountForPageSizeCheck(conf)).withMaxRowCountForPageSizeCheck(getMaxRowCountForPageSizeCheck(conf)).withColumnIndexTruncateLength(getColumnIndexTruncateLength(conf)).withStatisticsTruncateLength(getStatisticsTruncateLength(conf)).withMaxBloomFilterBytes(getBloomFilterMaxBytes(conf)).withBloomFilterEnabled(getBloomFilterEnabled(conf)).withPageRowCountLimit(getPageRowCountLimit(conf)).withPageWriteChecksumEnabled(getPageWriteChecksumEnabled(conf));new ColumnConfigParser().withColumnConfig(ENABLE_DICTIONARY, key -> conf.getBoolean(key, false), propsBuilder::withDictionaryEncoding).withColumnConfig(BLOOM_FILTER_ENABLED, key -> conf.getBoolean(key, false),propsBuilder::withBloomFilterEnabled).withColumnConfig(BLOOM_FILTER_EXPECTED_NDV, key -> conf.getLong(key, -1L), propsBuilder::withBloomFilterNDV).withColumnConfig(BLOOM_FILTER_FPP, key -> conf.getDouble(key, ParquetProperties.DEFAULT_BLOOM_FILTER_FPP),propsBuilder::withBloomFilterFPP).parseConfig(conf);ParquetProperties props = propsBuilder.build();long blockSize = getLongBlockSize(conf);int maxPaddingSize = getMaxPaddingSize(conf);boolean validating = getValidation(conf);...WriteContext fileWriteContext = writeSupport.init(conf);FileEncryptionProperties encryptionProperties = createEncryptionProperties(conf, file, fileWriteContext);ParquetFileWriter w = new ParquetFileWriter(HadoopOutputFile.fromPath(file, conf),fileWriteContext.getSchema(), mode, blockSize, maxPaddingSize, props.getColumnIndexTruncateLength(),props.getStatisticsTruncateLength(), props.getPageWriteChecksumEnabled(), encryptionProperties);w.start();...return new ParquetRecordWriter<T>(w,writeSupport,fileWriteContext.getSchema(),fileWriteContext.getExtraMetaData(),blockSize,codec,validating,props,memoryManager,conf);}

这里涉及到的关键的几个参数是:

   parquet.page.size                   1*1024*1024         -- page的大小 默认是 1MBparquet.block.size                  128*1024*1024       -- rowgroup的大小 默认是 128MBparquet.page.size.row.check.min     100                 -- page检查是否达到page size的最小行数parquet.page.size.row.check.max     10000               -- page检查是否达到page size的最大行数parquet.page.row.count.limit        20_000              -- page检查是否达到page size的行数极限行数

parquet.page.size.row.check.min parquet.page.size.row.check.max parquet.page.row.count.limit 这三个配置项存在着相互制约的关系,总的目标就是检查当行数达到了一定的阈值以后,来检查是否能够flush到内存page中,具体的可以查看ColumnWriteStoreBase类中的方法

接下来就是真正写操作了,调用的是InternalParquetRecordWriter.write方法,如下:

 private void initStore() {ColumnChunkPageWriteStore columnChunkPageWriteStore = new ColumnChunkPageWriteStore(compressor,schema, props.getAllocator(), props.getColumnIndexTruncateLength(), props.getPageWriteChecksumEnabled(),fileEncryptor, rowGroupOrdinal);pageStore = columnChunkPageWriteStore;bloomFilterWriteStore = columnChunkPageWriteStore;columnStore = props.newColumnWriteStore(schema, pageStore, bloomFilterWriteStore);MessageColumnIO columnIO = new ColumnIOFactory(validating).getColumnIO(schema);this.recordConsumer = columnIO.getRecordWriter(columnStore);writeSupport.prepareForWrite(recordConsumer);}public void write(T value) throws IOException, InterruptedException {writeSupport.write(value);++ recordCount;checkBlockSizeReached();}

initStore主要是初始化 pageStorecolumnStore
具体的spark interalRow怎么转换为parquet message,主要在writeSupport.write中的rootFieldWriters
接下来就是checkBlockSizeReached,这里主要就是flush rowgroup到磁盘了,
具体的读者可以看代码:
对于flush到page可以看checkBlockSizeReached中columnStore.flush()
对于flush rowroup到磁盘可以看checkBlockSizeReached中pageStore.flushToFileWriter(parquetFileWriter)
总结出来就是 一个spark parquet writer可能会占用128MB的内存(也就是parquet.block.size的大小),
因为只有在满足了rowgroup的大小以后,才会真正的flush到磁盘。

这篇关于Spark中写parquet文件是怎么实现的的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/737551

相关文章

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

W外链微信推广短连接怎么做?

制作微信推广链接的难点分析 一、内容创作难度 制作微信推广链接时,首先需要创作有吸引力的内容。这不仅要求内容本身有趣、有价值,还要能够激起人们的分享欲望。对于许多企业和个人来说,尤其是那些缺乏创意和写作能力的人来说,这是制作微信推广链接的一大难点。 二、精准定位难度 微信用户群体庞大,不同用户的需求和兴趣各异。因此,制作推广链接时需要精准定位目标受众,以便更有效地吸引他们点击并分享链接

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操