Observability:使用 OpenTelemetry 和 Elastic 监控 OpenAI API 和 GPT 模型

本文主要是介绍Observability:使用 OpenTelemetry 和 Elastic 监控 OpenAI API 和 GPT 模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者: 来自 Elastic David Hope

ChatGPT 现在非常火爆,甚至席卷了整个互联网。 作为 ChatGPT 的狂热用户和 ChatGPT 应用程序的开发人员,我对这项技术的可能性感到非常兴奋。 我看到的情况是,基于 ChatGPT 的解决方案将会呈指数级增长,人们将需要监控这些解决方案。

由于这是一项相当新技术,我们不想让专有技术给我们闪亮的新代码带来负担,不是吗? 不,我们不会,这就是为什么我们将在本博客中使用 OpenTelemetry 来监控我们的 ChatGPT 代码。 这对我来说尤其重要,因为我最近创建了一项通过 Zoom 通话生成会议记录的服务(需要使用 OpenAI 服务)。 如果我要任意使用这个功能,需要花费多少钱以及如何确保它可用?

OpenAI API 来救援

毫无疑问,OpenAI API 非常棒。 它还为我们提供了对每个 API 调用的每个响应中如下所示的信息,这可以帮助我们了解我们所收取的费用。 通过使用 OpenAI 在其网站上发布的 token 数量、模型和定价,我们可以计算成本。 问题是,我们如何将这些信息输入到我们的监控工具中?

{"choices": [{"finish_reason": "length","index": 0,"logprobs": null,"text": "\n\nElastic is an amazing observability tool because it provides a comprehensive set of features for monitoring"}],"created": 1680281710,"id": "cmpl-70CJq07gibupTcSM8xOWekOTV5FRF","model": "text-davinci-003","object": "text_completion","usage": {"completion_tokens": 20,"prompt_tokens": 9,"total_tokens": 29}
}

OpenTelemetry 来救援

OpenTelemetry 确实是一项出色的工作。 多年来,它得到了如此多的采用和投入,似乎真的已经到了我们可以将其称为 “可观察性 Linux” 的地步。 我们可以使用它来记录日志、指标和跟踪,并以供应商中立的方式将它们放入我们最喜欢的可观察性工具中 - 在本例中为 Elastic Observability。

借助 Python 中最新最好的 otel 库,我们可以自动检测外部调用,这将帮助我们了解 OpenAI 调用的执行情况。 让我们先看一下我们的示例 Python 应用程序,它实现了 Flask 和 ChatGPT API,并且还具有 OpenTelemetry。 如果你想亲自尝试一下,请查看本博客末尾的 GitHub 链接并按照以下步骤操作。

设置 Elastic Cloud 帐户(如果你还没有)

  1. 请访问 https://www.elastic.co/cloud/elasticsearch-service/signup 注册为期两周的免费试用。
  2. 创建部署。

登录后,单击添加集成。

单击 APM integrations

然后向下滚动以获取此博客所需的详细信息:

请务必设置以下环境变量,将变量替换为你从上面的 Elastic 和此处的 OpenAI 获得的数据,然后在命令行上运行这些 export 命令。

export OPEN_AI_KEY=sk-abcdefgh5ijk2l173mnop3qrstuvwxyzab2cde47fP2g9jij
export OTEL_EXPORTER_OTLP_AUTH_HEADER=abc9ldeofghij3klmn
export OTEL_EXPORTER_OTLP_ENDPOINT=https://123456abcdef.apm.us-west2.gcp.elastic-cloud.com:443

并安装以下 Python 库:

pip3 install opentelemetry-api
pip3 install opentelemetry-sdk
pip3 install opentelemetry-exporter-otlp
pip3 install opentelemetry-instrumentation
pip3 install opentelemetry-instrumentation-requests
pip3 install openai
pip3 install flask

下面是我们用于示例应用程序的代码。 在现实世界中,这将是你自己的代码。 所有这一切都是通过以下消息调用 OpenAI API:“Why is Elastic an amazing observability tool?”

import openai
from flask import Flask
import monitor  # Import the module
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
import urllib
import os
from opentelemetry import trace
from opentelemetry.sdk.resources import SERVICE_NAME, Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.instrumentation.requests import RequestsInstrumentor# OpenTelemetry setup up code here, feel free to replace the “your-service-name” attribute here.
resource = Resource(attributes={SERVICE_NAME: "your-service-name"
})
provider = TracerProvider(resource=resource)
processor = BatchSpanProcessor(OTLPSpanExporter(endpoint=os.getenv('OTEL_EXPORTER_OTLP_ENDPOINT'),headers="Authorization=Bearer%20"+os.getenv('OTEL_EXPORTER_OTLP_AUTH_HEADER')))
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)
tracer = trace.get_tracer(__name__)
RequestsInstrumentor().instrument()# Initialize Flask app and instrument itapp = Flask(__name__)
# Set OpenAI API key
openai.api_key = os.getenv('OPEN_AI_KEY')@app.route("/completion")
@tracer.start_as_current_span("do_work")
def completion():response = openai.Completion.create(model="text-davinci-003",prompt="Why is Elastic an amazing observability tool?",max_tokens=20,temperature=0)return response.choices[0].text.strip()if __name__ == "__main__":app.run()

使用 Monkey patching (猴子补丁)

在 monitor.py 代码中,你会看到我们做了一些叫做 “Monkey Patching” 的事情。 猴子修补是 Python 中的一项技术,你可以通过修改类或模块的属性或方法在运行时动态修改类或模块的行为。 猴子补丁允许你更改类或模块的功能,而无需修改其源代码。 当你需要修改你无法控制或无法直接修改的现有类或模块的行为时,它会很有用。

我们在这里要做的是修改 “Completion” 调用的行为,以便我们可以 “窃取” 响应指标并将它们添加到我们的 OpenTelemetry 范围中。 你可以在下面看到我们如何做到这一点:

def count_completion_requests_and_tokens(func):@wraps(func)def wrapper(*args, **kwargs):counters['completion_count'] += 1response = func(*args, **kwargs)token_count = response.usage.total_tokensprompt_tokens = response.usage.prompt_tokenscompletion_tokens = response.usage.completion_tokenscost = calculate_cost(response)strResponse = json.dumps(response)# Set OpenTelemetry attributesspan = trace.get_current_span()if span:span.set_attribute("completion_count", counters['completion_count'])span.set_attribute("token_count", token_count)span.set_attribute("prompt_tokens", prompt_tokens)span.set_attribute("completion_tokens", completion_tokens)span.set_attribute("model", response.model)span.set_attribute("cost", cost)span.set_attribute("response", strResponse)return responsereturn wrapper
# Monkey-patch the openai.Completion.create function
openai.Completion.create = count_completion_requests_and_tokens(openai.Completion.create)

通过将所有这些数据添加到我们的 Span,我们实际上可以将其发送到我们的 OpenTelemetry OTLP 端点(在本例中它将是 Elastic 的)。 这样做的好处是你可以轻松使用数据进行搜索或构建仪表板和可视化。 在最后一步中,我们还要计算成本。 我们通过实现以下函数来实现这一点,该函数将计算对 OpenAI API 的单个请求的成本。

def calculate_cost(response):if response.model in ['gpt-4', 'gpt-4-0314']:cost = (response.usage.prompt_tokens * 0.03 + response.usage.completion_tokens * 0.06) / 1000elif response.model in ['gpt-4-32k', 'gpt-4-32k-0314']:cost = (response.usage.prompt_tokens * 0.06 + response.usage.completion_tokens * 0.12) / 1000elif 'gpt-3.5-turbo' in response.model:cost = response.usage.total_tokens * 0.002 / 1000elif 'davinci' in response.model:cost = response.usage.total_tokens * 0.02 / 1000elif 'curie' in response.model:cost = response.usage.total_tokens * 0.002 / 1000elif 'babbage' in response.model:cost = response.usage.total_tokens * 0.0005 / 1000elif 'ada' in response.model:cost = response.usage.total_tokens * 0.0004 / 1000else:cost = 0return cost

Elastic 来拯救

一旦我们捕获了所有这些数据,就可以在 Elastic 中享受一些乐趣了。 在 Discover 中,我们可以看到使用 OpenTelemetry 库发送的所有数据点:

有了这些标签,构建仪表板就变得非常容易。 看一下我之前构建的这个(也已并入到我的 GitHub 存储库):

我们还可以看到 OpenAI 服务的 transactions、延迟以及与 ChatGPT 服务调用相关的所有 span。

在 transaction 视图中,我们还可以看到特定 OpenAI 调用花费了多长时间:

此处对 OpenAI 的某些请求花费了超过 3 秒的时间。 ChatGPT 可能非常慢,因此我们必须了解其速度有多慢以及用户是否感到沮丧。

概括

我们研究了通过 OpenTelemetry 和 Elastic 监控 ChatGPT。 ChatGPT 是一种全球现象,毫无疑问它会不断发展壮大,很快每个人都会使用它。 由于获取响应的速度可能很慢,因此人们能够了解使用此服务的任何代码的性能至关重要。

还有成本问题,因为了解这项服务是否会侵蚀你的利润以及你所要求的服务是否能为你的业务带来利润非常重要。 在当前的经济环境下,我们必须关注盈利能力。

在这里查看该解决方案的代码。 请随意使用 “monitor” 库来检测你自己的 OpenAI 代码。

有兴趣了解有关 Elastic Observability 的更多信息吗? 查看以下资源:

  • Elastic 可观测性简介
  • 可观察性基础培训
  • 观看 Elastic Observability 演示
  • 2023 年可观测性预测和趋势

并报名参加我们以 AWS 和 Forrester 为主题的 Elastic 可观测性趋势网络研讨会,不容错过!

在这篇博文中,我们可能使用了第三方生成式人工智能工具,这些工具由其各自所有者拥有和运营。 Elastic 对第三方工具没有任何控制权,我们对其内容、操作或使用不承担任何责任,也不对你使用此类工具可能产生的任何损失或损害负责。 使用人工智能工具处理个人、敏感或机密信息时请务必谨慎。 你提交的任何数据都可能用于人工智能培训或其他目的。 无法保证你提供的信息将得到安全或保密。 在使用之前,你应该熟悉任何生成式人工智能工具的隐私惯例和使用条款。

Elastic、Elasticsearch 和相关标志是 Elasticsearch N.V. 在美国和其他国家/地区的商标、徽标或注册商标。 所有其他公司和产品名称均为其各自所有者的商标、徽标或注册商标。

原文:Monitor OpenAI API and GPT models with OpenTelemetry and Elastic — Elastic Search Labs

这篇关于Observability:使用 OpenTelemetry 和 Elastic 监控 OpenAI API 和 GPT 模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/735688

相关文章

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意