将ReadWriteLock应用于缓存设计

2024-02-21 21:08

本文主要是介绍将ReadWriteLock应用于缓存设计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 --针对缓慢变化的小数据的缓存实现模型

 

 

    在JavaEEdev站点(http://www.javaeedev.com )的设计中,有几类数据是极少变化的,如ArticleCategory(文档分类),ResourceCategory(资源分类),Board(论坛版面)。在对应的DAO实现中,总是一次性取出所有的数据,例如:

List<ArticleCategory>  getArticleCategories();

  此类数据的特点是:数据量很小,读取非常频繁,变化却极慢(几天甚至几十天才变化一次),如果每次通过DAO从数据库获取数据,则增加了数据库 服务器的压力。为了在不影响整个系统结构的情况下透明地缓存这些数据,可以在Facade一层通过Proxy模式配合ReadWriteLock实现缓 存,而客户端和后台的DAO数据访问对象都不受影响:

将ReadWriteLock应用于缓存设计

  首先,现有的中间层是由Facade接口和一个FacadeImpl具体实现构成的。对ArticleCategory的相关操作在FacadeImpl中实现如下:

public class FacadeImpl implements Facade {protected CategoryDao categoryDao;public void setCategoryDao(CategoryDao categoryDao) {this.categoryDao = categoryDao;}// 读操作:public ArticleCategory queryArticleCategory(Serializable id) {return categoryDao.queryArticleCategory(id);}// 读操作:public List<ArticleCategory> queryArticleCategories() {return categoryDao.queryArticleCategories();}// 写操作:public void createArticleCategory(ArticleCategory category) {categoryDao.create(category);}// 写操作:public void deleteArticleCategory(ArticleCategory category) {categoryDao.delete(category);}// 写操作:public void updateArticleCategory(ArticleCategory category) {categoryDao.update(category);}// 其他方法省略...
}

  设计代理类FacadeCacheProxy,让其实现缓存ArticleCategory的功能:

public class FacadeCacheProxy implements Facade {private Facade target;public void setFacadeTarget(Facade target) {this.target = target;}// 定义缓存对象:private FullCache<ArticleCategory> cache = new FullCache<ArticleCategory>() {// how to get real data when cache is unavailable:protected List<ArticleCategory> doGetList() {return target.queryArticleCategories();}};// 从缓存返回数据:public List<ArticleCategory> queryArticleCategories() {return cache.getCachedList();}// 创建新的ArticleCategory后,让缓存失效:public void createArticleCategory(ArticleCategory category) {target.createArticleCategory(category);cache.clearCache();}// 更新某个ArticleCategory后,让缓存失效:public void updateArticleCategory(ArticleCategory category) {target.updateArticleCategory(category);cache.clearCache();}// 删除某个ArticleCategory后,让缓存失效:public void deleteArticleCategory(ArticleCategory category) {target.deleteArticleCategory(category);cache.clearCache();}
}

  该代理类的核心是调用读方法getArticleCategories()时,直接从缓存对象FullCache中返回结果,当调用写方法(create,update和delete)时,除了调用target对象的相应方法外,再将缓存对象清空。

  FullCache便是实现缓存的关键类。为了实现强类型的缓存,采用泛型实现FullCache:

public abstract class FullCache<T extends AbstractId> {...
}

  AbstractId是所有Domain Object的超类,目的是提供一个String类型的主键,同时便于在Hibernate或其他ORM框架中只需要配置一次JPA注解:

@MappedSuperclass
public abstract class AbstractId {protected String id;@Id@Column(nullable=false, updatable=false, length=32)@GeneratedValue(generator="system-uuid")@GenericGenerator(name="system-uuid", strategy="uuid")public String getId() { return id; }public void setId(String id) { this.id = id; }
}

  FullCache实现以下2个功能:

  1. List<T> getCachedList():获取整个缓存的List<T>
  2. clearCache():清除所有缓存

  此外,FullCache在缓存失效的情况下,必须从真正的数据源获得数据,因此,抽象方法:

  protected abstract List<T> doGetList()

  负责获取真正的数据。

  下面,用ReadWriteLock实现该缓存模型。

  Java 5平台新增了java.util.concurrent包,该包包含了许多非常有用的多线程应用类,例如ReadWriteLock,这使得开发人员不必自己封装就可以直接使用这些健壮的多线程类。

  ReadWriteLock是一种常见的多线程设计模式。当多个线程同时访问同一资源时,通常,并行读取是允许的,但是,任一时刻只允许最多一个线程写入,从而保证了读写操作的完整性。下图很好地说明了ReadWriteLock的读写并发模型:

 

允许不允许
不允许不允许

 

 

 

 

      当读线程远多于写线程时,使用ReadWriteLock来取代synchronized同步会显著地提高性能,因为大多数时候,并发的多个读线程不需要等待。

  Java 5的ReadWriteLock接口仅定义了如何获取ReadLock和WriteLock的方法,对于具体的ReadWriteLock的实现模式并没 有规定,例如,Read优先还是Write优先,是否允许在等待写锁的时候获取读锁,是否允许将一个写锁降级为读锁,等等。

  Java 5自身提供的一个ReadWriteLock的实现是ReentrantReadWriteLock,该ReadWriteLock实现能满足绝大多数的多线程环境,有如下特点:

  1. 支持两种优先级模式,以时间顺序获取锁和以读、写交替优先获取锁的模式;
  2. 当获得了读锁或写锁后,还可重复获取读锁或写锁,即ReentrantLock;
  3. 获得写锁后还可获得读锁,但获得读锁后不可获得写锁;
  4. 支持将写锁降级为读锁,但反之不行;
  5. 支持在等待锁的过程中中断;
  6. 对写锁支持Condition(用于取代wait,notify和notifyAll);
  7. 支持锁的状态检测,但仅仅用于监控系统状态而并非同步控制;

  FullCache采用ReentrantReadWriteLock实现读写同步:

public abstract class FullCache<T extends AbstractId> {private final ReadWriteLock lock = new ReentrantReadWriteLock();private final Lock readLock = lock.readLock(); // 读锁private final Lock writeLock = lock.writeLock(); // 写锁private List<T> cachedList = null; // 持有缓存的数据,若为null,表示缓存失效
}

  对于clearCache()方法,由于其是一个写操作,故定义如下:

public void clearCache() {writeLock.lock();cachedList = null;writeLock.unlock();
}

  对于get方法,由于是读操作,同时要考虑在缓存失效的情况下更新数据,其实现就稍微复杂一点:

public List<T> getCachedList() {// 获得读锁:readLock.lock();try {if(cachedList==null) {// 在获得写锁前,必须先释放读锁:readLock.unlock();writeLock.lock();try {cachedList = doGetList(); // 获取真正的数据}finally {// 在释放写锁前,先获得读锁:readLock.lock();writeLock.unlock();}}return cachedList;}finally {// 确保读锁在方法返回前被释放:readLock.unlock();}
}

  通过适当的装配(例如在Spring IoC容器中),让客户端持有FacadeCacheProxy的引用,就在中间层完全实现了透明的缓存,客户端代码一行也不用更改。

  考虑到多线程模型远比单线程复杂,为了确保FullCache实现的健壮性,编写一个FullCacheTest来执行单元测试:

public class FullCacheTest {// count how many hits:class Hit {private AtomicInteger total = new AtomicInteger(0);private AtomicInteger notHit = new AtomicInteger(0);public void total() {total.incrementAndGet();}public void notHit() {notHit.incrementAndGet();}public void debug() {System.err.println("Total get: " + total.intValue());System.err.println("Not hit: " + notHit.intValue());System.err.println("Hits: " + ((total.intValue()-notHit.intValue()) * 100 / total.intValue()) + "%");}}private static final int DATA_OPERATION = 10;private static final int MAX = 10;private static String[] ids = new String[MAX];static {for(int i=0; i<MAX; i++) {ids[i] = UUID.randomUUID().toString();}}private Hit hit;private FullCache<ArticleCategory> cache;@Beforepublic void setUp() {hit = new Hit();cache = new FullCache<ArticleCategory>() {@Overrideprotected List<ArticleCategory> doGetList() {hit.notHit();List<ArticleCategory> list = new ArrayList<ArticleCategory>();for(int i=0; i<MAX; i++) {ArticleCategory obj = new ArticleCategory();obj.setId(ids[i]);list.add(obj);}doSleep(DATA_OPERATION);return list;}@Overridepublic List<ArticleCategory> getCachedList() {hit.total();return super.getCachedList();}};}@Testpublic void testMultiThread() {final int THREADS = 100;final int LOOP_PER_THREAD = 100000;List<Thread> threads = new ArrayList<Thread>(THREADS);// test FullCache.getCachedList(id):for(int i=0; i<THREADS; i++) {threads.add(new Thread() {public void run() {for(int j=0; j<LOOP_PER_THREAD; j++) {List<ArticleCategory> list = cache.getCachedList();for(int k=0; k<MAX; k++) {assertEquals(ids[k], list.get(k).getId());}}}});}// test FullCache.clearCache():Thread clearThread = new Thread() {public void run() {for(;;) {cache.clearCache();try {Thread.sleep(DATA_OPERATION * 2);}catch(InterruptedException e) {break;}}}};// start all threads:clearThread.start();for(Thread t : threads) {t.start();}// wait for all threads:for(Thread t : threads) {try {t.join();}catch(InterruptedException e) {}}clearThread.interrupt();try {clearThread.join();}catch(InterruptedException e) {}// statistics:hit.debug();}private static void doSleep(long n) {try {Thread.sleep(n);}catch(InterruptedException e) {}}
}

  反复运行JUnit测试,均未报错。统计结果如下:

  Total get: 10000000

  Not hit: 7

  Hits: 99%

  执行时间3.9秒。如果用synchronized取代ReadWriteLock,执行时间为204秒,可见性能差异巨大。

总结:

  接口和实现的分离是必要的,否则难以实现Proxy模式。

  Facade模式和DAO模式都是必要的,否则,一旦数据访问分散在各个Servlet或JSP中,将难以控制缓存读写。

  下载完整的源代码

 作者简介
廖雪峰 (dev2dev id: xuefengl ),长期从事J2EE/J2ME开发,对Open Source框架有深入研究,曾参与网易商城等大型J2EE应用的开发。目前廖雪峰创建了JavaEE开发网(http://www.javaeedev.com ),著有《Spring 2.0核心技术与最佳实践》一书。

这篇关于将ReadWriteLock应用于缓存设计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/733073

相关文章

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象

使用Spring Cache时设置缓存键的注意事项详解

《使用SpringCache时设置缓存键的注意事项详解》在现代的Web应用中,缓存是提高系统性能和响应速度的重要手段之一,Spring框架提供了强大的缓存支持,通过​​@Cacheable​​、​​... 目录引言1. 缓存键的基本概念2. 默认缓存键生成器3. 自定义缓存键3.1 使用​​@Cacheab

Go信号处理如何优雅地关闭你的应用

《Go信号处理如何优雅地关闭你的应用》Go中的优雅关闭机制使得在应用程序接收到终止信号时,能够进行平滑的资源清理,通过使用context来管理goroutine的生命周期,结合signal... 目录1. 什么是信号处理?2. 如何优雅地关闭 Go 应用?3. 代码实现3.1 基本的信号捕获和优雅关闭3.2

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6