【2024美赛】C题 Momentum in Tennis网球运动中的势头 25页中英文论文及Python代码

本文主要是介绍【2024美赛】C题 Momentum in Tennis网球运动中的势头 25页中英文论文及Python代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【2024美赛】C题 Momentum in Tennis网球运动中的势头 25页中文论文

1 题目

A题:2024MCM问题C:网球运动中的势头

在这里插入图片描述

在2023年温布尔登网球公开赛男子组决赛中,20岁的西班牙新星卡洛斯-阿尔卡拉斯击败了36岁的诺瓦克-德约科维奇。这是德约科维奇自2013年以来首次在温布尔登输掉比赛,也结束了这位大满贯历史上最伟大球员之一的辉煌战绩。

[1]德约科维奇似乎注定会轻松获胜,他在第一盘以6-1的比分占据优势(7局比赛中赢了6局)。然而,第二盘比赛却十分紧张,最终阿尔卡雷斯在决胜盘中以7-6获胜。第三盘与第一盘相反,阿尔卡拉兹以6-1的比分轻松获胜。第四盘开始后,年轻的西班牙人似乎完全控制了局面,但不知何故,比赛的走势再次发生了变化,德约科维奇完全控制了局面,以6-3的比分赢得了这一盘。第五盘也是最后一盘比赛开始后,德约科维奇延续了第四盘的优势,但比赛的走向再次发生了变化,阿尔卡拉斯以6-4取得了胜利。本场比赛的数据在提供的数据集中,“match_id"为"2023-wimbledon-1701”。您可以使用"set_no"列(等于1)查看第一盘德约科维奇占优时的所有得分。似乎占优的一方有时会出现多分甚至多局的惊人波动,这通常归因于"势头"。

在字典中,“势头"的定义是"通过运动或一系列事件获得的力量或作用力。”[2]在体育运动中,一支球队或一名球员可能会觉得他们在比赛中拥有势头或"力量/作用力",但很难衡量这种现象。此外,如果存在"势"的话,比赛中的各种事件是如何产生或改变"势"的,也不是一目了然的。

提供2023年温布尔登网球公开赛前两轮之后所有男子比赛中每一分的数据。您可以自行决定加入其他球员信息或其他数据,但必须完整记录数据来源。使用这些数据

(1)建立一个模型,捕捉赛点发生时的比赛流程,并将其应用到一场或多场比赛中。您的模型应能确定哪位球员在比赛中的某个特定时间段表现更好,以及他们的表现好到什么程度。根据您的模型提供可视化的比赛流程描述。注意:在网球比赛中,发球的一方赢得赛点/比赛的概率要高得多。您可能希望以某种方式将这一因素考虑到您的模型中。

(2)一位网球教练对"势头"在比赛中的作用持怀疑态度。相反,他假设比赛中的波动和一名球员的成功是随机的。请使用您的模型/度量来评估这一说法。

(3)练们很想知道,是否有一些指标可以帮助判断比赛的流程何时会从偏向一名球员变为偏向另一名球员。

(4)利用提供的至少一场比赛的数据,建立一个模型来预测比赛中的这些波动。哪些因素似乎最相关(如果有的话)?

(5)考虑到过去比赛"势头"波动的差异,您如何建议球员在新的比赛中对阵不同的球员?

(6)在一场或多场其他比赛中测试您开发的模型。您对比赛中的波动预测得如何?

如果模型有时表现不佳,您是否能找出未来模型中可能需要包含的任何因素?您的模型对其他比赛(如女子比赛)、锦标赛、球场表面和其他运动(如乒乓球)的通用性如何?

(7)撰写一份不超过25页的报告,介绍您的研究结果,并附上一至两页的备忘录总结您的研究结果,并就"动力"的作用以及如何让球员做好准备,应对网球比赛中影响比赛进程的事件,向教练提出建议。

您的PDF解决方案总页数不超过25页,其中应包括

一页摘要表。

• 目录

• 您的全套解决方案

• 一至两页的备忘录。

• 参考文献列表。

• 人工智能使用报告(如已使用,则不计入25页限制。)

2 论文介绍

2.1 摘要

本文旨在建立描述网球比赛势头的数学模型,并分析其对比赛结果的影响。研究问题包括建立势头模型、分析势头与成功的关联性、选择指标说明比赛进程偏向、预测球员势头波动及对不同对手的应对策略。具体内容包括:

问题一:针对网球比赛势头的建模,我们建立了一个细致的模型,考虑了盘分、局分、小比分及发球优势概率等因素,并通过连续赢得各个阶段的分数和发球方赢球概率来量化模型。通过折线图可视化分析,验证了模型的合理性。

问题二:为分析球员势头对比赛成功的影响,我们采用了t检验和Mann-Whitney U检验方法,检验了球员势头波动的差异性,并得出结论:球员的势头波动与比赛成败相关,验证了模型的合理性。

问题三:通过皮尔逊相关性分析法筛选出高度相关的特征,建立了一个综合评分模型,用以判断比赛进程偏向一方球员的能力,为后续分析提供了依据。

问题四:针对预测球员势头波动和分析关键因素的问题,我们采用了基于树模型的回归算法,得到了XGBRegressor和RandomForestRegressor的均方误差,并通过树模型可视化得出了重要的关键因素。

问题五:为了针对不同对手做出应对策略,我们将计算的势头值二值化,并建立了决策树模型,覆盖了Alcaraz在比赛中的战术策略。

问题六:对模型的泛化性进行了检验,利用训练集拟合了XGB回归模型,并进行了测试,得出了相应的均方误差,为模型的改进建议提供了依据。

综上所述,本研究通过建立多个模型和方法,对网球比赛势头进行了全面深入的分析和研究,为网球比赛的实际应用提供了实质性的参考和帮助。

2.2 总结

(1)问题一

此题要求建立一个描述网球比赛势头的模型,用来描述每一次计分发生时的变化,需要考虑发球方在赢得这一分的概率更高。建立的模型,将盘分、局分、小比分及发球优势概率考虑进来,建立量化模型,主要分为四个方面,分别是连续赢得小分数、连续赢得局分数、连续赢得局分数、连续赢得盘分、发球方赢球概率。通过折线图可视化分析得出,计算的势头波动和比赛进程大致是相符合的,说明了模型的合理性。

(2)问题二

此题要求分析网球比赛中球员的势头对其成功的影响时,即比赛中球员的表现是否因连续得分或者赢得关键分而改善。分别是t检验和Mann-Whitney U 检验方法,检验每场比赛中两个球员的势头波动的差异性。如果差异性较大,能够说明其中一个球员的势头值波动是与比赛成败相关的,对于球员赢得比赛有积极的作用。反之,如果差异性较小,则说明势头是不足以影响比赛的成败。通过两种方法检验了31场比赛的所有数据,两种方法都说明明球员的势头波动是能够影响比赛成败的,也证明了我们建立的模型的合理性。

(3)问题三

此题要求通过选择一些指标来说明,比赛的进程偏向。首先采皮尔逊相关性分析法,计算球员数据与势头之间的相关性,筛选出高度相关的特征,包括ace、double fault、server、net point等特征,然后通过这些特征组合,分为发球能力、制胜能力等多个能力,建立一个判断比赛进程中综合评分,当评分大时,说明比赛进程偏向一方球员。

(4)问题四

此题要求预测球员的势头波动,并分析关键的因素。这是时间序列预测回归问题,采用了基于树模型的回归算法,分别时XGBRegressor和RandomForestRegressor,拟合的Alcaraz和Djokovic的在决赛中的势头波动,均方误差MSE分别为0.0003和0.001,随机森林模型的均方误差为5.76和7.84,并通过树模型可视化得出重要10个关键因素。

(5)问题五

为了给针对不同的对手,需要分析每个对手的战术特点,在比赛中能够针对性的做出应对策略。首先将计算的势头值二值化,然后用决策树模型,可视化在不同的情况下,做出的战术选择,从多个指标上体现。以Alcaraz的5场比赛为分析对象,建立的决策树模型非常全面的覆盖了Alcaraz在比赛中的战术策略,可以将其应用到对战下一场比赛中。

(6)问题六

为了检验势头的预测模型是否具有泛化性,首先需要利用训练集拟合问题四中建立的XGB回归模型,其中训练集选择2023温网中决赛前的所有数据,测试集选择决赛的数据,测试MSE分别为23.4和9.7。针对模型的拟合效果,我们进行原因分析,并提出了改进建议。
在这里插入图片描述

请添加图片描述

请添加图片描述

3 下载

https://github.com/BetterBench/BetterBench-Shop

这篇关于【2024美赛】C题 Momentum in Tennis网球运动中的势头 25页中英文论文及Python代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/731291

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学