内存计算研究进展-针对机器学习的近数据计算架构

2024-02-21 06:36

本文主要是介绍内存计算研究进展-针对机器学习的近数据计算架构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    针对机器学习的近数据计算架构代表性工作有: Georgia Institute of Technology的BSSync (bounded staled sync) 和 Neurocube,Advanced Micro Devices 的 CoML,具体如下。

1 BSSync

    BSSync指出,在并行实现的机器学习应用中,原子操作用来保障无锁状态下算法的收敛,但带来很大的同步开销,且同步产生的通信延迟不与占比大的计算延迟重叠。BSSync发现,在机器学习应用迭代收敛过程中,可以用未更新的中间数据进行计算,从而提出利用基于近数据计算的有边界一致性模型减少原子操作带来的延迟开销。图17是 BSSync系统结构,CPU 核里面增加了原子请求队列、控制寄存器以及区域表来实现边界一致性模型.实验显示,BSSync比机器学习应用在传统冯.诺依曼系统中的异步并行的实现快1.33倍。

2 Neurocube

    Neurocube是一个针对神经网络计算设计的可编程、可扩展,且节能的近数据计算系统架构。图18 是 Neurocube架构,左边是普遍使用的NDC cube结构,右边是逻辑层设计。逻辑层采用了细粒度可编程的设计模型,以灵活支持祌经网络计算.其中,每 个 P E 有 多 个 M AC单元支持神经网络中最常用的乘加操作,同时还有存储权值的寄存器和缓存以及相应的计数器。

    图19 是 Neurocube的执行流程.它首先将神经网络存储到NDC cube的存储单元中,包括每层数据、神经元状态、连接权值.当一个层处理好之后,与中央处理器交互一次,然后执行下一层。Neurocube通过对逻辑层硬件、数据映射方式、片上互联,以及编程方式的精心设计,使得祌经网络计算在NDC cube中能够高效执行。

    实验显示,相比于GPU系统,Neurocube有 4 倍的每瓦计算效率提升,与 ASIC系统相比,灵活性更好、扩展能力更强。

    不同于针对机器学习设计的注重优化乘加(MAC) 操作的近数据计算系统,C oM L lM 提出,虽然包含MAC操作的卷积层等计算占整个机器学习过程的比例大,但这些计算是计算密集型的,数据复用性好,计算/字节比率高(即一个字节从内存中读出来之后用来计算的次数多);事实上,机器学习过程中,约32%的时间用于数据密集型计算,这些计算的计算/字节比率低。图 2 0 展示了神经网络中低计算/字节比率的计算部分。CoM L 将这些低计算/字节比率的计算部分放在近数据计算端,把MAC等操作放在主处理器上做。

     实验显示,C oM L 在机器学习的数据密集型计算上的加速达到了 2 0 倍,总体有14%的性能提升。

参考文献

毛海宇,舒继武,李飞,等. 内存计算研究进展. 中国科学:信息科学,2021, 51: 173-206, doi: 10.1360/SSI-2020-0037 M ao H Y, Shu J W , Li F , et al. D evelopm ent of processing-in-m em ory (in C hinese). Sci Sin Inform , 2021, 51: 173-206, doi: 10.1360/SSI-2020-0037

这篇关于内存计算研究进展-针对机器学习的近数据计算架构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/730863

相关文章

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,