代码随想录day26--贪心基础

2024-02-21 05:28

本文主要是介绍代码随想录day26--贪心基础,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是贪心

贪心的本质是选择每一阶段的局部最优,从而达到全局最优

举个例子:

有一堆钞票,可以拿走十张,如果想要达到最大的金额,应该怎么拿?

指定每次拿最大的,最终结果就是拿走最大数额的钱。

每次拿最大的就是局部最优,最后拿走最大数额后推出的就是全局最优。

贪心的套路(什么时候使用贪心)

这一点与我们之前的二叉树以及回溯算法不同,并没有什么固定套路可以使用。

贪心的唯一难点就是如何通过局部最优解,推到整体最优

这时候就又有一个问题了,如何才能看出局部最优是否能推出整体最优呢?

只能靠手动模拟,如果模拟可行,就可以试一试贪心策略,如果不可行,可能需要使用动态规划了。

如何验证可不可以使用贪心呢?

最好的策略就是举反例,如果想不到反例,那么就试一试贪心吧

刷题或者面试的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试一试贪心。例如刚刚说的拿钞票的例子,就是模拟一下每次拿最大的,最后可以拿到最多的钱。

所以这就是为什么很多同学通过了贪心的题目,但是都不知道自己使用了贪心算法,因为有时候贪心就是常识性的推导,所以会认为本应该这样做。

贪心一般解题步骤

贪心算法一般分为以下四步:

·将问题分解成若干个子问题

·找出合适的贪心策略

·求解每一个子问题的最优解

·将局部最优解堆叠成全局最优解

在解题的时候只需要想清楚局部最优解是什么,如果可以推导出全局最优,那就足够了。


LeetCode455.分发饼干

题目描述:

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

示例 1:

输入: g = [1,2,3], s = [1,1]
输出: 1
解释: 
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。

示例 2:

输入: g = [1,2], s = [1,2,3]
输出: 2
解释: 
你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.

解题思路:

·这题的局部最优就是大饼干为给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩

·先将饼干数组和小孩数组进行排序,然后从后向前遍历小孩数组,用大饼干优先满足胃口大的,再统计喂饱的数量,如图:

·这个例子可以看出,只有将饼干9喂给胃口为7的小孩,这样才算整体最优解,并且想不出反例,那么就可以很简单的将代码写出来了

代码如下:

class Solution {
public:int findContentChildren(vector<int>& g, vector<int>& s) {sort(g.begin(),g.end());sort(s.begin(),s.end());int result = 0;int index = s.size()-1;for(int i = g.size()-1;i >= 0;i--){if(index >= 0 && s[index] >= g[i]){result++;index--;}}return result;}
};

·时间复杂度:O(nlogn)

·空间复杂度:O(1)

易错点

·有的同学可能会思考,能不能先遍历饼干,再遍历小孩呢?这样是不可以的

因为for中i是固定移动的,而if里的小标index是符合条件才能移动,如果for遍历饼干,if控制小孩,则会出现:所有饼干都无法满足最后一个小孩的胃口,导致无解。所以一定要for控制胃口,里面的if控制饼干。

总结:这是一道很基础的贪心题目,而且思路也很容易想到。这题很清晰的展现了贪心的解题思考过程,想清楚局部最优解,想清楚全局最优解,感觉局部最优可以推导出全局最优并且想不出反例,那就可以试一试贪心。

LeetCode376.摆动序列

题目描述:

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。

  • 例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。

  • 相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。

给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。

示例 1:

输入:nums = [1,7,4,9,2,5]
输出:6
解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。

示例 2:

输入:nums = [1,17,5,10,13,15,10,5,16,8]
输出:7
解释:这个序列包含几个长度为 7 摆动序列。
其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。

示例 3:

输入:nums = [1,2,3,4,5,6,7,8,9]
输出:2

解题思路:

·局部最优解:删除单调坡上的节点(不包括单调坡两端的节点),那么这个坡就可以有两个局部峰值

·整体最优解:整个序列满足最多的局部峰值,从而达到最长摆动序列

*局部最优推导出全局最优,并且举不出反例,那么可以使用贪心

·但是可以不用删除操作,只需要使用双指针,虚拟指针preDiff(nums[i] - nums[i-1]),指向节点之前,默认值为0,指针curDiff((nums[i+1] - nums[i]),指向节点之后,如果满足preDiff < 0 && curDiff > 0或者preDiff > 0 && curDiff < 0就说明出现了波动,再将curDiff赋值给preDiff

·本题要考虑的三种情况:

1.上下坡中有平坡

2.数组首尾两端

3.单调坡中有平坡

因为这几个情况中会出现 preDiff = 0的情况,所以需要在上面的条件中加入preDiff = 0的条件

代码如下:

class Solution {
public:int wiggleMaxLength(vector<int>& nums) {int result = 1;int preDiff = 0;int curDiff = 0;for(int i = 0;i < nums.size()-1;i++){curDiff = nums[i+1] - nums[i];if((preDiff >= 0 && curDiff < 0) || (preDiff <= 0 && curDiff > 0)){result++;preDiff = curDiff;}}return result;}
};

·时间复杂度:O(n)

·空间复杂度:O(1)

易错点

·没有把三种情况考虑完全

·单调坡中有平坡,只要出现的变化就改变,但应该是出现一正一负才能改变

·result未初始赋值为1,for循环中,nums.size()未减一

总结:这题看起来很简答,但是需要考虑的问题不仅多,而且杂,我并没有将说的三种情况一一进行画图解释,大家可以先话题并且将preDiff 和curDiff画出后思考,即可明白。

LeetCode53.最大子序和

题目描述:

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

解题思路:

·当-2和1在一起时,一定是从1开始计算,因为负数只会拉低总和,这就是我们需要贪心的地方

局部最优解:当连续和为负数的时候立刻放弃,从下一个元素重新计算连续和

全局最优解:选取最大连续和

·使用变量result将count记录下,如果count大于result则记录,若小于等于0则置零

代码如下:

class Solution {
public:int maxSubArray(vector<int>& nums) {int result = INT32_MIN;int count = 0;for(int i = 0;i < nums.size();i++){count += nums[i];if(count > result) result = count;if(count <= 0) count = 0;}return result;}
};

·时间复杂度:O(n)

·空间复杂度:O(1)

易错点:

·for循环中两个if不能写反,不然-1无法通过

·有同学会觉得如果后面的元素如果一直小那么是不是会影响结果,但是其实变的是count,result并没有改变,大家脑洞模拟一下就知道了

总结:这道题说是贪心,但是贪心的思路也不是很好考虑出,所以说,贪心理论很直白,有时候看似是常识,但是思路却不是很好想。

这篇关于代码随想录day26--贪心基础的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/730694

相关文章

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤