一文搞懂LDO !

2024-02-21 00:28
文章标签 一文 ldo 搞懂

本文主要是介绍一文搞懂LDO !,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

7.LDO

1.原理

通过运放调节P-MOS的输出

低压差: 输出压降比较低,例如输入3.3V,输出可以达到3.2V

线性: LDO内部的MOS管工作于线性状态。(可变电阻区)

稳压器: 说明了LDO的用途是用来给电源稳压。

LDO有几种控制模式,其他都是三极管控制,这几种控制的区别在于最小压差区不一样。

LDO内部基本都是由4大部件构成,分别是分压取样电路、基准电压、误差放大电路和晶体管调整电路。

分压取样电路:通过反馈电阻R1R2对输出电压进行采集;

基准电压: 通过bandgap(带隙电压基准)产生的,目的为了温度变化对基准的影响小;

误差放大电路:将采集的电压输入到比较器反向输入端,与正向输入端的基准电压(期望输出的电压)进行比较,再将比较结果进行放大;

晶体管调整电路: 把这个放大后的信号输出到晶体管的控制极(也就是PMOS管的栅极或者PNP型三极管的基极),从而这个放大后的信号(电流)就可以控制晶体管的导通电压了,这就是一个负反馈调节回路。

2.参数

输入输出压差(Dropout Voltage

压差一般都是很小,LDO的输入电流几乎等于输出电流。压差越大,效率越低。发热功率=电压差 * 电流。Note:负载电流很小,压差过大也可以使用LDO

线性调整率

输入变化对输出的影响,即在负载一定的情况下,输出电压变化量和输入电压变化量之比。线性调整率越小越好。

负载调整率

是指在给定负载变化下的输出电压的变化,这里的负载变化通常是从无负载到满负载。负载调整率越小越好。说明 LDO 抑制负载干扰的能力越强。

电源抑制比(PSRR

输入纹波与输出纹波的比值的对数关系。用来反应LDO对不同频率的输入电源纹波的抑制能力。在特定频段,PSRR越大越好,输出信号受到电源的影响越小。如果用在低噪声场合,一定要选择高PSRR80dB以上)的LDO,建议在80dB以上。

瞬态响应

表示负载电流突变时引起的输出电压的最大变化,它是输出电容Co及其等效串联电阻ESR和旁路电容Cb的函数,其中Cb的作用是提高负载瞬态响应能力,也起到了为电路高频旁路的作用 。要想实现最佳瞬态响应,闭环回路带宽必须尽可能高,同时还要确保有足够相位余量,以保持稳定性。

电容太大,电压跌落小,响应慢;电容太小,电压跌落大,响应快。通常 Cb 在 4.7uf 到 47uf 之间,推荐 10-22uf。

静态电流(Iq

静态电流(Quiescent Current)是外部负载电流为0时,LDO内部电路供电所需的电流。通常保持尽可能低的水平。如果是电池供电,对续航要求很高,一定要选择Iq低的LDO

输入电流等于输出电流加静态功耗。在轻载时,IQ越小,效率就高。

一般LDO芯片的静态电流大小与其他性能成反关系,如低噪声,高电源电压抑制比,静态电流大。

噪声

噪声指LDO自身产生的噪声信号。只有高精度,低噪声电路上才需要关注这个参数。

输出电流

设计时预留50%的余量,实际运用过程中,输出电流的大小和输入输出电压都有关系;

输入电压

稳压器输入端可以输入的电压范围(注意输入电压需要降额80%考虑)。

输出电压

稳压器输出端的输出电压值,不要选有ADJ功能的,这样节省器件,降低干扰。

3.特性

输出自放电

LDO关闭后,负载电容上仍然后电量。在下次输出时,会因为电量,产生一个快速的Voltage Spike,对后级电路有破坏性。带自放电功能LDO能在LDO关闭输出后,泄放输出电容上的电量。

软启动

软启动有助于减小启动时的浪涌电流和提供上电顺序,在SS和地引脚之间连接一个小的陶瓷电容。

EN 信号也要有一定的电流才能驱动

上拉电阻不要太大,100K 以内基本没问题 。Start-up 时间是 IC 做死的,如果想要延时启动,最简单的办法是在 EN 上接一个大一些的电容到地,构成一个简单的 RC 电路。

假负载的作用

有的 LDO 芯片有最低负载电流的要求。如果低于最 低负载电流,可能会出现系统不稳定的情况。

反馈对地电阻

保证最小对地泄放电流通路,维持最小对地电流。

降噪电容【基准电压pin接个电容到地】

可用于过滤内部电压基准产生的噪声 (通常用 0.1uF 电容,退偶半径 2cm) 形成 RC 滤波,还可以让 LDO 上电变缓。减小上电时的浪涌冲击。

前馈电容

增加相位裕度改善负载瞬态响应。输出将减少振铃并更快稳定。

4.LDODCDC区别

LDO外围器件少,电路简单,成本低,负载响应快,输出纹波小;效率低,输入输出压差不能太大;只能降压;噪声小;分为可调和固定型;

DC-DC外围器件多,电路复杂,成本高;负载响应慢,输出纹波大;效率高,输入电压范围宽泛;支持降压和升压;输出电流高,功率大;开关噪声大。 一般都是可调型,通过FB反馈电阻调节;

这篇关于一文搞懂LDO !的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/730031

相关文章

一文详解Java Condition的await和signal等待通知机制

《一文详解JavaCondition的await和signal等待通知机制》这篇文章主要为大家详细介绍了JavaCondition的await和signal等待通知机制的相关知识,文中的示例代码讲... 目录1. Condition的核心方法2. 使用场景与优势3. 使用流程与规范基本模板生产者-消费者示例

电脑密码怎么设置? 一文读懂电脑密码的详细指南

《电脑密码怎么设置?一文读懂电脑密码的详细指南》为了保护个人隐私和数据安全,设置电脑密码显得尤为重要,那么,如何在电脑上设置密码呢?详细请看下文介绍... 设置电脑密码是保护个人隐私、数据安全以及系统安全的重要措施,下面以Windows 11系统为例,跟大家分享一下设置电脑密码的具体办php法。Windo

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

一文带你搞懂Nginx中的配置文件

《一文带你搞懂Nginx中的配置文件》Nginx(发音为“engine-x”)是一款高性能的Web服务器、反向代理服务器和负载均衡器,广泛应用于全球各类网站和应用中,下面就跟随小编一起来了解下如何... 目录摘要一、Nginx 配置文件结构概述二、全局配置(Global Configuration)1. w

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

CSP-J基础之数学基础 初等数论 一篇搞懂(一)

文章目录 前言声明初等数论是什么初等数论历史1. **古代时期**2. **中世纪时期**3. **文艺复兴与近代**4. **现代时期** 整数的整除性约数什么样的整数除什么样的整数才能得到整数?条件:举例说明:一般化: 判断两个数能否被整除 因数与倍数质数与复合数使用开根号法判定质数哥德巴赫猜想最大公因数与辗转相除法计算最大公因数的常用方法:举几个例子:例子 1: 计算 12 和 18

CSP-J基础之数学基础 初等数论 一篇搞懂(二)

文章目录 前言算术基本定理简介什么是质数?举个简单例子:重要的结论:算术基本定理公式解释:举例: 算术基本定理的求法如何找出质因数:举个简单的例子: 重要的步骤:C++实现 同余举个例子:同余的性质简介1. 同余的自反性2. 同余的对称性3. 同余的传递性4. 同余的加法性质5. 同余的乘法性质 推论 总结 前言 在计算机科学和数学中,初等数论是一个重要的基础领域,涉及到整数

Post-Training有多重要?一文带你了解全部细节

1. 简介 随着LLM学界和工业界日新月异的发展,不仅预训练所用的算力和数据正在疯狂内卷,后训练(post-training)的对齐和微调方法也在不断更新。InstructGPT、WebGPT等较早发布的模型使用标准RLHF方法,其中的数据管理风格和规模似乎已经过时。近来,Meta、谷歌和英伟达等AI巨头纷纷发布开源模型,附带发布详尽的论文或报告,包括Llama 3.1、Nemotron 340

一文说清什么是AI原生(AI Native)应用以及特点

引言:智能新纪元 如今,走在街头,哪儿不被智能科技包围?智能音箱、自动驾驶汽车、聊天机器人......这些都在用不同的方式提升我们的生活体验。然而,究竟什么才能称得上“AI原生应用”呢? 什么是AI原生?   AI原生不仅仅是简单地引入人工智能功能。真正的AI原生应用犹如一个智慧的“大脑”,它的每一个决策都依赖于深度学习与数据分析。以Siri为例,它通过学习用户的习惯和需求,提供个性化的