一文搞懂LDO !

2024-02-21 00:28
文章标签 一文 ldo 搞懂

本文主要是介绍一文搞懂LDO !,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

7.LDO

1.原理

通过运放调节P-MOS的输出

低压差: 输出压降比较低,例如输入3.3V,输出可以达到3.2V

线性: LDO内部的MOS管工作于线性状态。(可变电阻区)

稳压器: 说明了LDO的用途是用来给电源稳压。

LDO有几种控制模式,其他都是三极管控制,这几种控制的区别在于最小压差区不一样。

LDO内部基本都是由4大部件构成,分别是分压取样电路、基准电压、误差放大电路和晶体管调整电路。

分压取样电路:通过反馈电阻R1R2对输出电压进行采集;

基准电压: 通过bandgap(带隙电压基准)产生的,目的为了温度变化对基准的影响小;

误差放大电路:将采集的电压输入到比较器反向输入端,与正向输入端的基准电压(期望输出的电压)进行比较,再将比较结果进行放大;

晶体管调整电路: 把这个放大后的信号输出到晶体管的控制极(也就是PMOS管的栅极或者PNP型三极管的基极),从而这个放大后的信号(电流)就可以控制晶体管的导通电压了,这就是一个负反馈调节回路。

2.参数

输入输出压差(Dropout Voltage

压差一般都是很小,LDO的输入电流几乎等于输出电流。压差越大,效率越低。发热功率=电压差 * 电流。Note:负载电流很小,压差过大也可以使用LDO

线性调整率

输入变化对输出的影响,即在负载一定的情况下,输出电压变化量和输入电压变化量之比。线性调整率越小越好。

负载调整率

是指在给定负载变化下的输出电压的变化,这里的负载变化通常是从无负载到满负载。负载调整率越小越好。说明 LDO 抑制负载干扰的能力越强。

电源抑制比(PSRR

输入纹波与输出纹波的比值的对数关系。用来反应LDO对不同频率的输入电源纹波的抑制能力。在特定频段,PSRR越大越好,输出信号受到电源的影响越小。如果用在低噪声场合,一定要选择高PSRR80dB以上)的LDO,建议在80dB以上。

瞬态响应

表示负载电流突变时引起的输出电压的最大变化,它是输出电容Co及其等效串联电阻ESR和旁路电容Cb的函数,其中Cb的作用是提高负载瞬态响应能力,也起到了为电路高频旁路的作用 。要想实现最佳瞬态响应,闭环回路带宽必须尽可能高,同时还要确保有足够相位余量,以保持稳定性。

电容太大,电压跌落小,响应慢;电容太小,电压跌落大,响应快。通常 Cb 在 4.7uf 到 47uf 之间,推荐 10-22uf。

静态电流(Iq

静态电流(Quiescent Current)是外部负载电流为0时,LDO内部电路供电所需的电流。通常保持尽可能低的水平。如果是电池供电,对续航要求很高,一定要选择Iq低的LDO

输入电流等于输出电流加静态功耗。在轻载时,IQ越小,效率就高。

一般LDO芯片的静态电流大小与其他性能成反关系,如低噪声,高电源电压抑制比,静态电流大。

噪声

噪声指LDO自身产生的噪声信号。只有高精度,低噪声电路上才需要关注这个参数。

输出电流

设计时预留50%的余量,实际运用过程中,输出电流的大小和输入输出电压都有关系;

输入电压

稳压器输入端可以输入的电压范围(注意输入电压需要降额80%考虑)。

输出电压

稳压器输出端的输出电压值,不要选有ADJ功能的,这样节省器件,降低干扰。

3.特性

输出自放电

LDO关闭后,负载电容上仍然后电量。在下次输出时,会因为电量,产生一个快速的Voltage Spike,对后级电路有破坏性。带自放电功能LDO能在LDO关闭输出后,泄放输出电容上的电量。

软启动

软启动有助于减小启动时的浪涌电流和提供上电顺序,在SS和地引脚之间连接一个小的陶瓷电容。

EN 信号也要有一定的电流才能驱动

上拉电阻不要太大,100K 以内基本没问题 。Start-up 时间是 IC 做死的,如果想要延时启动,最简单的办法是在 EN 上接一个大一些的电容到地,构成一个简单的 RC 电路。

假负载的作用

有的 LDO 芯片有最低负载电流的要求。如果低于最 低负载电流,可能会出现系统不稳定的情况。

反馈对地电阻

保证最小对地泄放电流通路,维持最小对地电流。

降噪电容【基准电压pin接个电容到地】

可用于过滤内部电压基准产生的噪声 (通常用 0.1uF 电容,退偶半径 2cm) 形成 RC 滤波,还可以让 LDO 上电变缓。减小上电时的浪涌冲击。

前馈电容

增加相位裕度改善负载瞬态响应。输出将减少振铃并更快稳定。

4.LDODCDC区别

LDO外围器件少,电路简单,成本低,负载响应快,输出纹波小;效率低,输入输出压差不能太大;只能降压;噪声小;分为可调和固定型;

DC-DC外围器件多,电路复杂,成本高;负载响应慢,输出纹波大;效率高,输入电压范围宽泛;支持降压和升压;输出电流高,功率大;开关噪声大。 一般都是可调型,通过FB反馈电阻调节;

这篇关于一文搞懂LDO !的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/730031

相关文章

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

CSP-J基础之数学基础 初等数论 一篇搞懂(一)

文章目录 前言声明初等数论是什么初等数论历史1. **古代时期**2. **中世纪时期**3. **文艺复兴与近代**4. **现代时期** 整数的整除性约数什么样的整数除什么样的整数才能得到整数?条件:举例说明:一般化: 判断两个数能否被整除 因数与倍数质数与复合数使用开根号法判定质数哥德巴赫猜想最大公因数与辗转相除法计算最大公因数的常用方法:举几个例子:例子 1: 计算 12 和 18

CSP-J基础之数学基础 初等数论 一篇搞懂(二)

文章目录 前言算术基本定理简介什么是质数?举个简单例子:重要的结论:算术基本定理公式解释:举例: 算术基本定理的求法如何找出质因数:举个简单的例子: 重要的步骤:C++实现 同余举个例子:同余的性质简介1. 同余的自反性2. 同余的对称性3. 同余的传递性4. 同余的加法性质5. 同余的乘法性质 推论 总结 前言 在计算机科学和数学中,初等数论是一个重要的基础领域,涉及到整数

Post-Training有多重要?一文带你了解全部细节

1. 简介 随着LLM学界和工业界日新月异的发展,不仅预训练所用的算力和数据正在疯狂内卷,后训练(post-training)的对齐和微调方法也在不断更新。InstructGPT、WebGPT等较早发布的模型使用标准RLHF方法,其中的数据管理风格和规模似乎已经过时。近来,Meta、谷歌和英伟达等AI巨头纷纷发布开源模型,附带发布详尽的论文或报告,包括Llama 3.1、Nemotron 340

一文说清什么是AI原生(AI Native)应用以及特点

引言:智能新纪元 如今,走在街头,哪儿不被智能科技包围?智能音箱、自动驾驶汽车、聊天机器人......这些都在用不同的方式提升我们的生活体验。然而,究竟什么才能称得上“AI原生应用”呢? 什么是AI原生?   AI原生不仅仅是简单地引入人工智能功能。真正的AI原生应用犹如一个智慧的“大脑”,它的每一个决策都依赖于深度学习与数据分析。以Siri为例,它通过学习用户的习惯和需求,提供个性化的

世界公认十大护眼灯数据出炉!一文看懂孩子用的台灯哪个牌子好

近年来,随着科技的迅猛发展,诸如智能手机、电脑等电子设备在工作、学习及娱乐中的应用日益广泛,人们对这些设备的依赖程度也随之加深。然而,长时间面对屏幕不可避免地给眼睛带来伤害,如眼疲劳、干燥甚至近视等问题。因此,市场对能够缓解眼疲劳的照明产品的需求日益增长。这类护眼照明产品通常采用无频闪、无紫外线辐射等技术,旨在减少对眼睛的潜在危害,有效保护视力健康,并降低眼疾的发生率。随着护眼台灯的不断创新进步,

一文详解go底层原理之垃圾回收

1 前置知识 1.1 三色回收法 三色回收法在gov1.5版本时是主流的gc方式 简单介绍一下流程: 暂停程序执行流程(开启STW)将新创建的对象全部标记为白色从根节点开始遍历,把遍历到的第一层全部改为灰色遍历一次灰色集合,将灰色集合引用对象变为黑色重复上述步骤,知道没有灰色对象清除白色对象结束STW 1.2 STW 上述1.1所说的STW就是指的stop the world,简单的说

Apache Spark3.0什么样?一文读懂Apache Spark最新技术发展与展望

简介: 阿里巴巴高级技术专家李呈祥带来了《Apache Spark 最新技术发展和3.0+ 展望》的全面解析,为大家介绍了Spark在整体IT基础设施上云背景下的新挑战和最新技术进展,同时预测了Spark 3.0即将重磅发布的新功能。 2019阿里云峰会·上海开发者大会于7月24日盛大开幕,在本次峰会的开源大数据专场上,阿里巴巴高级技术专家李呈祥带来了《Apache Spark 最新技术发展和

一文俯瞰Elasticsearch核心原理

点击上方蓝色字体,选择“设为星标” 回复”资源“获取更多惊喜 大数据技术与架构 点击右侧关注,大数据开发领域最强公众号! 暴走大数据 点击右侧关注,暴走大数据! Lucene 介绍 Lucene是一种高性能、可伸缩的信息搜索(IR)库,在2000年开源,最初由鼎鼎大名的Doug Cutting开发,是基于Java实现的高性能的开源项目。Lucene采用了基于倒排表的设计原理,可以非常高

【数字信号处理】一文讲清FFT(快速傅里叶变换)

目录 快速傅里叶变换(Fast Fourier Transform,FFT)FFT的背景快速傅里叶变换(Fast Fourier Transform,FFT)DFT的数学表达实际计算重要性和应用频谱泄露、频谱混叠奈奎斯特采样定理参考链接 快速傅里叶变换(Fast Fourier Transform,FFT) FFT的背景 1、为什么要时域→频域频率?50Hz+频率120Hz