【bzoj4484】【JSOI2015】【最小表示】【拓扑排序+bitset】

2024-02-20 15:18

本文主要是介绍【bzoj4484】【JSOI2015】【最小表示】【拓扑排序+bitset】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Description

【故事背景】
还记得去年JYY所研究的强连通分量的问题吗?去年的题目里,JYY研究了对于有向图的“加边”问题。对于图论有着强烈兴趣的JYY,今年又琢磨起了“删边”的问题。
【问题描述】
对于一个N个点(每个点从1到N编号),M条边的有向图,JYY发现,如果从图中删去一些边,那么原图的连通性会发生改变;而也有一些边,删去之后图的连通性并不会发生改变。
JYY想知道,如果想要使得原图任意两点的连通性保持不变,我们最多能删掉多少条边呢?
为了简化一下大家的工作量,这次JYY保证他给定的有向图一定是一个有向无环图(JYY:大家经过去年的问题,都知道对于给任意有向图的问题,最后都能转化为有向无环图上的问题,所以今年JYY就干脆简化一下大家的工作)。

Input

输入一行包含两个正整数N和M。
接下来M行,每行包含两个1到N之间的正整数x_i和y_i,表示图中存在一条从x_i到y_i的有向边。
输入数据保证,任意两点间只会有至多一条边存在。
N<=30,000,M<=100,000

Output

输出一行包含一个整数,表示JYY最多可以删掉的边数。

Sample Input

5 6
1 2
2 3
3 5
4 5
1 5
1 3

Sample Output

2

题解:

先求出这个图的拓扑序.

按拓扑序倒着做.中途可以求出一个点到出度为0的点的最大距离.

访问到一个点x的时候.

把它所有指向的点按之前求的距离从大到小排序.

然后枚举每个它指向点.如果这个点在之前已经可以从当前点访问到,那这条边显然多余.

用bitset维护一下每个点和其他点的联通情况即可.

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<bitset>
#include<algorithm>
#define N 30010
#define M 100010 
using namespace std;
int point[N],n,m,x,y,t,next[M],d[N],q[N],cnt,len[N],end,ans;
bitset<N>bit[N];
struct edge{int st,en;}e[M];
struct use{int en,v;}a[N];
inline int read(){int x(0);char ch=getchar();while (ch<'0'||ch>'9') ch=getchar();while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();return x; 
}  
inline void add(int x,int y){next[++cnt]=point[x];point[x]=cnt;e[cnt].st=x;e[cnt].en=y; 
}
inline bool cmp(use a,use b){return a.v>b.v;
}
inline void solve(){int h(0),t(0),num(0);for (int i=1;i<=n;i++) if (!d[i]) q[++t]=i;while (h<t){int u=q[++h];for (int i=point[u];i;i=next[i]){d[e[i].en]--;if (!d[e[i].en]) q[++t]=e[i].en;} } for (int i=t;i>=1;i--){int u=q[i];bit[u][u]=1;num=0;len[u]=1; for (int j=point[u];j;j=next[j]){a[++num]=use{e[j].en,len[e[j].en]};len[u]=max(len[u],len[e[j].en]+1);  }sort(a+1,a+num+1,cmp);for (int j=1;j<=num;j++){int y=a[j].en;//cout<<u<<' '<<y<<endl;if (bit[u][y]) ans++;bit[u]|=bit[y];}  	} 
}
int main(){n=read();m=read();for (int i=1;i<=m;i++){x=read();y=read();add(x,y);d[y]++;}solve();cout<<ans<<endl;
} 


这篇关于【bzoj4484】【JSOI2015】【最小表示】【拓扑排序+bitset】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/728634

相关文章

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Python中lambda排序的六种方法

《Python中lambda排序的六种方法》本文主要介绍了Python中使用lambda函数进行排序的六种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录1.对单个变量进行排序2. 对多个变量进行排序3. 降序排列4. 单独降序1.对单个变量进行排序

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

poj 1734 (floyd求最小环并打印路径)

题意: 求图中的一个最小环,并打印路径。 解析: ans 保存最小环长度。 一直wa,最后终于找到原因,inf开太大爆掉了。。。 虽然0x3f3f3f3f用memset好用,但是还是有局限性。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#incl

hdu 1102 uva 10397(最小生成树prim)

hdu 1102: 题意: 给一个邻接矩阵,给一些村庄间已经修的路,问最小生成树。 解析: 把已经修的路的权值改为0,套个prim()。 注意prim 最外层循坏为n-1。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstri