DEBUG神器valgrind之memcheck报告分析

2024-02-20 14:18

本文主要是介绍DEBUG神器valgrind之memcheck报告分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

memcheck怎么运行

valgrind --log-file=valgrind.log --tool=memcheck --leak-check=full --show-reachable=no --workaround-gcc296-bugs=yes ./mcsample arg1 arg2
–log-file 表示输出报告文件,可以是相对路径或完全路径
–tool=memcheck 做内存检测就是memcheck,要知道valgrind是一个工具集
–leak-check=full 完整检测
–show-reachable=no 是否显示reachable详见内存泄露部分,通常是no,也可以改成yes
–workaround-gcc296-bugs=yes 如果你的gcc存在对应的bug,则要设为yes,否则有误报
最后是被检测程序及其参数。

memcheck报告怎么看

先来一段意外的写错

int main(int argc, char *argv[])
{char* bigBuff = (char*)malloc[1024];free(bigBuff);
}
==3498== Invalid free() / delete / delete[] / realloc()
==3498==    at 0x402B06C: free (in /usr/lib/valgrind/vgpreload_memcheck-x86-linux.so)
==3498==    by 0x8048444: main (main.cpp:19)
==3498==  Address 0x40c0500 is in the Text segment of /lib/i386-linux-gnu/libc-2.15.so

代码错误的将malloc()写成了malloc[],相当于取得了malloc函数指针后面的地址,输出报告告诉我们这个地址位于.text段。

可以看出报告的基本格式是:

{问题描述}   
at {地址、函数名、模块或代码行} 
by {地址、函数名、代码行}
by ...{逐层依次显示调用堆栈}
Address 0x???????? {描述地址的相对关系}

而报告的输出文档整体格式则可以总结为:

1. copyright 版权声明
2. 异常读写报告
2.1 主线程异常读写
2.2 线程A异常读写报告
2.3 线程B异常读写报告
2... 其他线程
3. 堆内存泄露报告
3.1 堆内存使用情况概述(HEAP SUMMARY)
3.2 确信的内存泄露报告(definitely lost)
3.3 可疑内存操作报告 (show-reachable=no关闭)
3.4 泄露情况概述(LEAK SUMMARY)

都有哪些常见异常报告

内存泄漏

int main(int argc, char *argv[])
{char* bigBuff = (char*)malloc(1024);
}
1,024 bytes in 1 blocks are definitely lost in loss record 1 of 1at 0x402BE68: malloc (in /usr/lib/valgrind/vgpreload_memcheck-x86-linux.so)by 0x8048414: main (main.cpp:17)

definitely lost:内存没有被释放,且没有任何指针指向这里。肯定泄漏了。报告给出的堆栈是内存被分配时的调用堆栈,它可以基本明确内存是由什么业务逻辑创建的。
still reachable:是说内存没有被释放,尽管如此仍有指针指向,内存仍在使用中,这可以不算泄露。(程序退出时仍在工作的异步系统调用?)
possibly lost:是说可能有泄漏,一般是有二级指针(指针的指针)等复杂情况不易于追踪时出现。
suppressed:统计了使用valgrind的某些参数取消了特定库的某些错误,会被归结到这里

异常释放

int main(int argc, char *argv[])
{char* bigBuff = (char*)malloc(1024);char* offsetBuff = bigBuff + 888;free(offsetBuff);
}
 Invalid free() / delete / delete[] / realloc()at 0x402B06C: free (in /usr/lib/valgrind/vgpreload_memcheck-x86-linux.so)by 0x8048461: main (main.cpp:24)Address 0x41f23a0 is 888 bytes inside a block of size 1,024 alloc'dat 0x402BE68: malloc (in /usr/lib/valgrind/vgpreload_memcheck-x86-linux.so)by 0x8048444: main (main.cpp:17)

free() / delete / delete[] / realloc() 四种中的任一种,这里是free的非法释放。在描述地址的相对关系时,使用了一个句子,句子的格式是:Address 0x???????? is {x} bytes {inside/before/after} a block of size {y} {alloc’d/free’d}

它表示了释放的地址与一个y长度块的相对位置关系。如果地址位于块前,则用before,位于块内则用inside,块后则是after。而最后的alloc’d代表这个y长度的块处于有效状态,其分配时的栈如下;而free’d代表y长度块已删除,其删除时的栈如下。

所以上面的报告可以解释为:地址0x41f23a0位于一个长度1024的有效块内+888处,其分配时的调用堆栈如下。

非法读写

int main(int argc, char *argv[])
{char* bigBuff = (char*)malloc(1024);uint64_t* bigNum = (uint64_t*)(bigBuff+1020);*bigNum = 0x12345678AABBCCDD;printf("bigNum is %llu\n",*bigNum);free(bigBuff);
}
Invalid write of size 4at 0x8048490: main (main.cpp:19)
Address 0x41f2428 is 0 bytes after a block of size 1,024 alloc'dat 0x402BE68: malloc (in /usr/lib/valgrind/vgpreload_memcheck-x86-linux.so)by 0x8048474: main (main.cpp:17)Invalid read of size 4at 0x804849B: main (main.cpp:20)
Address 0x41f2428 is 0 bytes after a block of size 1,024 alloc'dat 0x402BE68: malloc (in /usr/lib/valgrind/vgpreload_memcheck-x86-linux.so)by 0x8048474: main (main.cpp:17)

对一个内存区的使用超过了分配的大小时,可以触发Invalid write/read,同时被告知长度。
本例中uint64_t8字节长,访问超出了4字节。
如果将bigBuff+1020改成bigBuff-20,那么报告中会准确的告诉你Address xxx is 20 bytes before a block of …

另外一个有趣的现象是,我发现对uint64_t的非法访问会产生24字节长度非法访问的报告,这说明了什么?

不匹配的释放

int main(int argc, char *argv[])
{int unused;char* bigBuff = (char*)malloc(1024);delete[] bigBuff;printf("unused=%d",unused);
}
Mismatched free() / delete / delete []at 0x402A8DC: operator delete[](void*) (in /usr/lib/valgrind/vgpreload_memcheck-x86-linux.so)by 0x80484FB: main (main.cpp:19)
Address 0x4323028 is 0 bytes inside a block of size 1,024 alloc'dat 0x402BE68: malloc (in /usr/lib/valgrind/vgpreload_memcheck-x86-linux.so)by 0x80484E4: main (main.cpp:18)Use of uninitialised value of size 4at 0x416E0DB: _itoa_word (_itoa.c:195)by 0x417221A: vfprintf (vfprintf.c:1629)by 0x4178B2E: printf (printf.c:35)by 0x41454D2: (below main) (libc-start.c:226)

不管malloc分配后用delete还是delete[],又或者是new[]之后粗心用delete释放,都会得到Mismatched free() / delete / delete []报告,且报告主体内容基本一致。

使用未初始的值

上例中int unused并未赋值即被使用,得到了Use of uninitialised value of size 4的报告,这样的问题通常不致命,但是也需要排除。

可以观察到一个有趣情况,堆栈最后一层首次出现了(below main),它表示代码位于main函数以外被执行,也并非来自于线程,我还不能明确解释这种现象,但是我做了下面这个测试:…

静态构造和释放

class GlobalClass
{
public:GlobalClass(){char* buf = (char*)malloc(10);*(int*)(buf+8) = 100;free(buf);}~GlobalClass(){char* buf = (char*)malloc(10);*(int*)(buf+8) = 100;free(buf);}void fake(){}
} g_globalClass;int main(int argc, char *argv[])
{g_globalClass.fake();
}
Invalid write of size 4at 0x804857B: GlobalClass::GlobalClass() (main.cpp:21)by 0x804850F: __static_initialization_and_destruction_0(int, int) (main.cpp:31)by 0x8048551: _GLOBAL__sub_I_g_globalClass (main.cpp:55)by 0x8048631: __libc_csu_init (in /home/jinzeyu/codelocal/build-mcsample-Desktop_Qt_5_3_GCC_32bit-Debug/mcsample)by 0x4060469: (below main) (libc-start.c:185)
Address 0x41f2030 is 8 bytes inside a block of size 10 alloc'dat 0x402BE68: malloc (in /usr/lib/valgrind/vgpreload_memcheck-x86-linux.so)by 0x8048571: GlobalClass::GlobalClass() (main.cpp:20)by 0x804850F: __static_initialization_and_destruction_0(int, int) (main.cpp:31)by 0x8048551: _GLOBAL__sub_I_g_globalClass (main.cpp:55)by 0x8048631: __libc_csu_init (in /home/jinzeyu/codelocal/build-mcsample-Desktop_Qt_5_3_GCC_32bit-Debug/mcsample)by 0x4060469: (below main) (libc-start.c:185)Invalid write of size 4at 0x80485B9: GlobalClass::~GlobalClass() (main.cpp:27)by 0x4079B80: __run_exit_handlers (exit.c:78)by 0x4079C0C: exit (exit.c:100)by 0x40604DA: (below main) (libc-start.c:258)
Address 0x41f2070 is 8 bytes inside a block of size 10 alloc'dat 0x402BE68: malloc (in /usr/lib/valgrind/vgpreload_memcheck-x86-linux.so)by 0x80485AF: GlobalClass::~GlobalClass() (main.cpp:26)by 0x4079B80: __run_exit_handlers (exit.c:78)by 0x4079C0C: exit (exit.c:100)by 0x40604DA: (below main) (libc-start.c:258)

静态类的构造和释放都在main之外,所以都出现了(below main)的字样,堆栈的函数名也很好的证实了这两个过程。这里我联想到了另一个问题,就是静态构造的顺序不一定按预期,强烈建议静态对象之间不要有依赖关系。

崩溃

如果在memcheck运行你的程序过程中遇到崩溃,它依然能够提供一些有用的信息

--16198-- VALGRIND INTERNAL ERROR: Valgrind received a signal 11 (SIGSEGV) - exiting
--16198-- si_code=1;  Faulting address: 0x74207972;  sp: 0x6564ca5c
valgrind: the 'impossible' happened:Killed by fatal signal
==16198==    at 0x380C0AD4: ??? (in /usr/lib/valgrind/memcheck-x86-linux)
==16198==    by 0x380C12C5: ??? (in /usr/lib/valgrind/memcheck-x86-linux)
==16198==    by 0x38040A63: ??? (in /usr/lib/valgrind/memcheck-x86-linux)
==16198==    by 0x38040B36: ??? (in /usr/lib/valgrind/memcheck-x86-linux)
==16198==    by 0x3803EA4B: ??? (in /usr/lib/valgrind/memcheck-x86-linux)
==16198==    by 0x20202E78: ???sched status:running_tid=3

然后报告中依次罗列崩溃时各线程所处的堆栈和线程的运行状态

Thread 1: status = VgTs_WaitSys
...Thread 2: status = VgTs_WaitSys
...Thread 3: status = VgTs_Runnable
==16198==    at 0x402C9B4: operator new(unsigned int) (in /usr/lib/valgrind/vgpreload_memcheck-x86-linux.so)
==16198==    by 0x437D7D3: std::string::_Rep::_S_create(unsigned int, unsigned int, std::allocator<char> const&) (in /usr/lib/i386-linux-gnu/libstdc++.so.6.0.16)
==16198==    by 0x437FBB5: std::basic_string<char, std::char_traits<char>, std::allocator<char> >::basic_string(char const*, std::allocator<char> const&) (in /usr/lib/i386-linux-gnu/libstdc++.so.6.0.16)
==16198==    by 0x82A76A3: DataChecker::handle_data_check_resp_msg(void*) (data_checker.c:55)
==16198==    by 0x8144411: main_thread(void*) (main_thread.c:198)
==16198==    by 0x82839CF: thread_manager_start_routine(void*) (thread_manager.c:72)
==16198==    by 0x42D3D4B: start_thread (pthread_create.c:308)
==16198==    by 0x450BFDD: clone (clone.S:130)Thread 4: status = VgTs_WaitSys
...

那么,运行中的线程自然是嫌疑最大的,我们可以提取它的堆栈信息做进一步分析。

这篇关于DEBUG神器valgrind之memcheck报告分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/728495

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

Goland debug失效详细解决步骤(合集)

《Golanddebug失效详细解决步骤(合集)》今天用Goland开发时,打断点,以debug方式运行,发现程序并没有断住,程序跳过了断点,直接运行结束,网上搜寻了大量文章,最后得以解决,特此在这... 目录Bug:Goland debug失效详细解决步骤【合集】情况一:Go或Goland架构不对情况二:

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实