OSQP文档学习

2024-02-20 14:12
文章标签 文档 学习 osqp

本文主要是介绍OSQP文档学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OSQP官方文档

1 QSQP简介

OSQP求解形式为的凸二次规划:
在这里插入图片描述
x ∈ R n x∈R^n xRn:优化变量
P ∈ S + n P∈S^n_+ PS+n:半正定矩阵

特征
(1)高效:使用了一种自定义的基于ADMM的一阶方法,只需要在设置阶段进行单个矩阵分解。
(2)鲁棒:该算法设置之后不需要对问题数据进行假设(问题只需要是凸的)。
(3)原始/对偶不可行问题:当问题是原始或对偶不可行时,OSQP会检测到它。这是第一个基于一阶方法的QP求解器。
(4)可嵌入:有一个简单的接口来生成定制的可嵌入C代码,而不需要内存管理器。
(5)不需要外部库即可运行
(6)可以很容易地进行热启动,并且可以缓存矩阵分解,以非常有效地解决参数化问题
(7)接口:提供了到C、C++、Fortran、Julia、Matlab、Python、R、Ruby和Rust的接口

2 OSQP求解器

在这里插入图片描述
求解器运行以下ADMM算法:
在这里插入图片描述
Π \Pi Π:投影到超盒上 [ l , u ] [l,u] [l,u] ρ \rho ρ是ADMM步长
Linear system solution
线性系统解是算法的核心部分。它可以使用直接或间接的方法来完成。
使用直接线性系统求解器,我们求解以下具有拟定矩阵的线性系统:
在这里插入图片描述
使用间接线性系统求解器,我们求解以下具有正定矩阵的线性系统:
在这里插入图片描述
OSQP核心旨在支持不同的线性系统求解器。

Convergence
在每k次迭代时,OSQP生成一个元组 ( x k , z k , y k ) (x^k,z^k,y^k) (xk,zk,yk)
x k ∈ R n , z k 、 y k ∈ R m x^k∈R^n,z^k、y^k∈R^m xkRn,zkykRm
( x k , z k , y k ) (x^k,z^k,y^k) (xk,zk,yk)相关的原始残差和对偶残差:
在这里插入图片描述
在这里插入图片描述
#pic
不可行问题
OSQP能够检测问题是原始不可行还是对偶不可行。
在这里插入图片描述

3 Get started

安装:
Linux操作系统,默认gcc,cmake已经安装好
① 克隆存储库

git clone https://github.com/osqp/osqp

② 创建目录和更改目录build

cd osqp
mkdir build
cd build

③ 创建 Makefile

cmake -G "Unix Makefiles" ..

④ 编译 OSQP

cmake --build .

C语言:
在 CMake 项目中包括 OSQP,具体取决于您需要共享库还是静态库:

# Find OSQP library and headers
find_package(osqp REQUIRED)# Link the OSQP shared library
target_link_libraries(yourTarget PRIVATE osqp::osqp)# or...# Link the OSQP static library
target_link_libraries(yourTarget PRIVATE osqp::osqpstatic)

4 接口

OSQP有几个接口。以下链接中显示了有关设置、状态值以及如何指定不同线性系统解算器的信息
Solver settings
Linear Systems Solvers
Status values

在这里插入图片描述
在这里插入图片描述
C:github.com/osqp/osqp
C++:github.com/robotology/osqp-eigen

5 Examples

Demo:
① Setup and solve :设置和求解
在这里插入图片描述
C:

#include <stdlib.h>
#include "osqp.h"int main(int argc, char **argv) {/* Load problem data */OSQPFloat P_x[3] = {4.0, 1.0, 2.0, };OSQPInt P_nnz = 3;OSQPInt P_i[3] = {0, 0, 1, };OSQPInt P_p[3] = {0, 1, 3, };OSQPFloat q[2] = {1.0, 1.0, };OSQPFloat A_x[4] = {1.0, 1.0, 1.0, 1.0, };OSQPInt A_nnz = 4;OSQPInt A_i[4] = {0, 1, 0, 2, };OSQPInt A_p[3] = {0, 2, 4, };OSQPFloat l[3] = {1.0, 0.0, 0.0, };OSQPFloat u[3] = {1.0, 0.7, 0.7, };OSQPInt n = 2;OSQPInt m = 3;/* Exitflag */OSQPInt exitflag = 0;/* Solver, settings, matrices */OSQPSolver   *solver;OSQPSettings *settings;OSQPCscMatrix* P = malloc(sizeof(OSQPCscMatrix));OSQPCscMatrix* A = malloc(sizeof(OSQPCscMatrix));/* Populate matrices */csc_set_data(A, m, n, A_nnz, A_x, A_i, A_p);csc_set_data(P, n, n, P_nnz, P_x, P_i, P_p);/* Set default settings */settings = (OSQPSettings *)malloc(sizeof(OSQPSettings));if (settings) {osqp_set_default_settings(settings);settings->alpha = 1.0; /* Change alpha parameter */}/* Setup solver */exitflag = osqp_setup(&solver, P, q, A, l, u, m, n, settings);/* Solve problem */if (!exitflag) exitflag = osqp_solve(solver);/* Cleanup */osqp_cleanup(solver);if (A) free(A);if (P) free(P);if (settings) free(settings);return (int)exitflag;
};

② Update vectors:更新向量
在这里插入图片描述

#include <stdlib.h>
#include "osqp.h"int main(int argc, char **argv) {/* Load problem data */OSQPFloat P_x[3] = {4.0, 1.0, 2.0, };OSQPInt P_nnz = 3;OSQPInt P_i[3] = {0, 0, 1, };OSQPInt P_p[3] = {0, 1, 3, };OSQPFloat q[2] = {1.0, 1.0, };OSQPFloat q_new[2] = {2.0, 3.0, };OSQPFloat A_x[4] = {1.0, 1.0, 1.0, 1.0, };OSQPInt A_nnz = 4;OSQPInt A_i[4] = {0, 1, 0, 2, };OSQPInt A_p[3] = {0, 2, 4, };OSQPFloat l[3] = {1.0, 0.0, 0.0, };OSQPFloat l_new[3] = {2.0, -1.0, -1.0, };OSQPFloat u[3] = {1.0, 0.7, 0.7, };OSQPFloat u_new[3] = {2.0, 2.5, 2.5, };OSQPInt n = 2;OSQPInt m = 3;/* Exitflag */OSQPInt exitflag = 0;/* Solver, settings, matrices */OSQPSolver   *solver;OSQPSettings *settings;OSQPCscMatrix* P = malloc(sizeof(OSQPCscMatrix));OSQPCscMatrix* A = malloc(sizeof(OSQPCscMatrix));/* Populate matrices */csc_set_data(A, m, n, A_nnz, A_x, A_i, A_p);csc_set_data(P, n, n, P_nnz, P_x, P_i, P_p);/* Set default settings */settings = (OSQPSettings *)malloc(sizeof(OSQPSettings));if (settings) osqp_set_default_settings(settings);/* Setup solver */exitflag = osqp_setup(&solver, P, q, A, l, u, m, n, settings);/* Solve problem */if (!exitflag) exitflag = osqp_solve(solver);/* Update problem */if (!exitflag) exitflag = osqp_update_data_vec(solver, q_new, l_new, u_new);/* Solve updated problem */if (!exitflag) exitflag = osqp_solve(work);/* Cleanup */osqp_cleanup(solver);if (A) free(A);if (P) free(P);if (settings) free(settings);return (int)exitflag;
};

③ Update matrices:更新矩阵P和A
在这里插入图片描述

#include <stdlib.h>
#include "osqp.h"int main(int argc, char **argv) {/* Load problem data */OSQPFloat P_x[3] = {4.0, 1.0, 2.0, };OSQPFloat P_x_new[3] = {5.0, 1.5, 1.0, };OSQPInt P_nnz = 3;OSQPInt P_i[3] = {0, 0, 1, };OSQPInt P_p[3] = {0, 1, 3, };OSQPFloat q[2] = {1.0, 1.0, };OSQPFloat q_new[2] = {2.0, 3.0, };OSQPFloat A_x[4] = {1.0, 1.0, 1.0, 1.0, };OSQPFloat A_x_new[4] = {1.2, 1.5, 1.1, 0.8, };OSQPInt A_nnz = 4;OSQPInt A_i[4] = {0, 1, 0, 2, };OSQPInt A_p[3] = {0, 2, 4, };OSQPFloat l[3] = {1.0, 0.0, 0.0, };OSQPFloat l_new[3] = {2.0, -1.0, -1.0, };OSQPFloat u[3] = {1.0, 0.7, 0.7, };OSQPFloat u_new[3] = {2.0, 2.5, 2.5, };OSQPInt n = 2;OSQPInt m = 3;/* Exitflag */OSQPInt exitflag = 0;/* Solver, settings, matrices */OSQPSolver   *solver;OSQPSettings *settings;OSQPCscMatrix* P = malloc(sizeof(OSQPCscMatrix));OSQPCscMatrix* A = malloc(sizeof(OSQPCscMatrix));/* Populate matrices */csc_set_data(A, m, n, A_nnz, A_x, A_i, A_p);csc_set_data(P, n, n, P_nnz, P_x, P_i, P_p);/* Set default settings */settings = (OSQPSettings *)malloc(sizeof(OSQPSettings));if (settings) osqp_set_default_settings(settings);/* Setup solver */exitflag = osqp_setup(&solver, P, q, A, l, u, m, n, settings);/* Solve problem */if (!exitflag) exitflag = osqp_solve(solver);/*  Update problemNB: Update only upper triangular part of P*/if (!exitflag) exitflag = osqp_update_data_mat(solver,P_x_new, OSQP_NULL, 3,A_x_new, OSQP_NULL, 4);/* Solve updated problem */if (!exitflag) exitflag = osqp_solve(work);/* Cleanup */osqp_cleanup(solver);if (A) free(A);if (P) free(P);if (settings) free(settings);return (int)exitflag;
};

应用:
① Huber fitting
② Lasso
③ Least-squares:最小二乘法
④ Model predictive control (MPC)
我们考虑将线性时不变动力系统控制到某个参考状态的问题。 为了实现这一点,我们使用约束线性二次 MPC,它在每个时间步长求解以下有限视界最优控制问题 x r ∈ R n x x_r∈R^{n_x} xrRnx
在这里插入图片描述

⑤ Portfolio optimization
⑥ Support vector machine (SVM):支持向量机

这篇关于OSQP文档学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/728490

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能