大连理工大学 2021年最优化方法大作业(2)

2024-02-20 08:30

本文主要是介绍大连理工大学 2021年最优化方法大作业(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

接上一篇文章,这次分享一下其他的三种算法,上一篇编写的不精确一维线搜索需要用到,链接在这:大连理工大学 2021年最优化方法大作业(1)_JiangTesla的博客-CSDN博客

下一道题在这:大连理工大学2021最优化方法大作业(3)_JiangTesla的博客-CSDN博客

2022题目的小补充大连理工大学2022上半年最优化方法大作业_Jiang_Tesla的博客-CSDN博客

目录

 1.牛顿法

2.共轭梯度法

3.BFGS


 1.牛顿法

牛顿法的迭代方式非常简单粗暴,不需要一维搜索,直接梯度乘上hesse阵的逆就行了,框图逻辑见下图(图画的不太对,循环那个箭头应该指向菱形上端,相信各位可以理解)

 直接上代码了

%下面3个是输入
x = [0;0];
eps = 0.0001;
start_newton(x,eps);%题目方程式
function f = fun(x) 
f = 10*(x(1)-1)^2 + (x(2)+1)^4; 
end%题目方程式的hesse阵
function h = hesse(x) h = zeros(2,2); h(1,1)=2+400*(3*x(1)^2-x(2)); h(1,2)=-400*x(1);h(2,1)=-400*x(1);h(2,2)=200;end 题目方程式的梯度
function g = grad(x) g = zeros(2,1); g(1)=20*(x(1)-1); g(2) = 4*(x(2)+1)^3; end %牛顿法迭代开始
function start_newton(x0,eps) gk = grad(x0);res = norm(gk);k = 0; while res > eps fprintf('The %d-th iteration, the residual is %f\n',k,res); fprintf('x=[%f,%f],min(f):%f\n',x0(1),x0(2),fun(x0));fprintf('**********************************************\n');hk = (hesse(x0))^(-1);%hesse阵的逆x0=x0-hk*gk;k = k+1;gk = grad(x0);res = norm(gk); end fprintf('The %d-th iteration, the residual is %f\n',k,res); fprintf('x=[%f,%f],min(f):%f\n',x0(1),x0(2),fun(x0));end

2.共轭梯度法

书上有现成的框图,我就不画了

可以看出来,共轭梯度法的搜索方向是一个一个生成的,对于n维问题共轭方向只有n个,所以计算n步之后,以xn为起点,重新生成共轭方向继续迭代,下面上代码,这是共轭方向法的核心,fun(x)还有梯度函数,一维搜索函数(大连理工大学 2021年最优化方法大作业(1)_JiangTesla的博客-CSDN博客)都和之前的一样,直接复制粘在同一个文件里就行,我就不总粘重复的代码了。

function  start_conjungate_gradient(x0, eps)
n=2%二维问题,所以n等于2
g0 = gradient(x0);%自己定义的梯度函数
s0 = -(g0.');
k = 0;
count = 0;%计算迭代次数
lambda = wolfe_powell(x0,s0);%这个函数我在上一个文章写了,就是一维搜索
x1 = x0 +lambda*s0;
g1 = gradient(x1);
while (norm(g1) > eps)if k<n-1 %判断是否已经生成了n个共轭方向v = (norm(g1))^2/(norm(g0)^2);s1 = -g1 + s0*v;k = k+1;x0 = x1;g0 = gradient(x0);s0 = s1;lambda = wolfe_powell(x0,s0);x1 = x0 +lambda*s0;g1 = gradient(x1);else x0 = x1;g0 = gradient(x0);s0 = -(g0.');lambda = wolfe_powell(x0,s0);x1 = x0 +lambda*s0;g1 = gradient(x1);k = 0;endcount=count+1;fprintf('The %d-th iteration, the residual is %f\n',count,norm(g1)); fprintf('x=[%f,%f],min(f):%f\n',x0(1),x0(2),fun(x0));fprintf('**********************************************\n');
endfprintf('The %d-th iteration, the residual is %f\n',count,norm(g1)); fprintf('x=[%f,%f],min(f):%f\n',x0(1),x0(2),fun(x0));
end

3.BFGS

先上流程图

H(k+1)的公式懒得打了,书上都有P137,

因为H(k+1)的计算公式比较复杂,我先写了个小函数用来计算

function hk = get_hk(h,x,g)%进来的是列向量
miu = 1 + g.'*h*g/(x.'*g);
fenzi = miu*x*x.'-h*g*x.'-x*g.'*h;
hk = h + fenzi/(x.'*g);
end

下面是核心代码

function  start_bfgs(x0, eps)
n=2;%二维所以是2
g0 = gradient(x0);
h0 = eye(2,2);
s0 = -h0*g0.';
k = 0;
count = 0;
lambda = wolfe_powell(x0,s0);
x1 = x0 +lambda*s0;
g1 = gradient(x1);
while (norm(g1) > eps)if k<n-1detax = x1 - x0;%下面是计算H(k+1)的步骤detag = g1.' - g0.';h1 = get_hk(h0,detax,detag);%上面定义的计算函数s1 = -h1*g1.';k = k+1;x0 = x1;g0 = gradient(x0);s0 = s1;h0 = h1;lambda = wolfe_powell(x0,s0);x1 = x0 +lambda*s0;g1 = gradient(x1);else x0 = x1;g0 = gradient(x0);h0 = eye(2,2);s0 = -h0*g0.';lambda = wolfe_powell(x0,s0);x1 = x0 +lambda*s0;g1 = gradient(x1);k = 0;endcount=count+1;fprintf('The %d-th iteration, the residual is %f\n',count,norm(g1)); fprintf('x=[%f,%f],min(f):%f\n',x0(1),x0(2),fun(x0));fprintf('**********************************************\n');
endfprintf('The %d-th iteration, the residual is %f\n',count,norm(g1)); fprintf('x=[%f,%f],min(f):%f\n',x1(1),x1(2),fun(x1));
end

最后给出一个bfgs总体代码,方便大家对其他方法的重组

x0 = [0;0];
eps = 1e-4;
start_bfgs(x0, eps);function  start_bfgs(x0, eps)
n=2;
g0 = gradient(x0);
h0 = eye(2,2);
s0 = -h0*g0.';
k = 0;
count = 0;
lambda = wolfe_powell(x0,s0);
x1 = x0 +lambda*s0;
g1 = gradient(x1);
while (norm(g1) > eps)if k<n-1detax = x1 - x0;detag = g1.' - g0.';h1 = get_hk(h0,detax,detag);s1 = -h1*g1.';k = k+1;x0 = x1;g0 = gradient(x0);s0 = s1;h0 = h1;lambda = wolfe_powell(x0,s0);x1 = x0 +lambda*s0;g1 = gradient(x1);else x0 = x1;g0 = gradient(x0);h0 = eye(2,2);s0 = -h0*g0.';lambda = wolfe_powell(x0,s0);x1 = x0 +lambda*s0;g1 = gradient(x1);k = 0;endcount=count+1;fprintf('The %d-th iteration, the residual is %f\n',count,norm(g1)); fprintf('x=[%f,%f],min(f):%f\n',x0(1),x0(2),fun(x0));fprintf('**********************************************\n');
endfprintf('The %d-th iteration, the residual is %f\n',count,norm(g1)); fprintf('x=[%f,%f],min(f):%f\n',x1(1),x1(2),fun(x1));
endfunction lamda = wolfe_powell(xk,dk)
c1 = 0.1;c2=0.5;
a = 0; b =Inf;
lamda = 1;
while(1)if ~(fun(xk+lamda*dk)-fun(xk) <= c1*lamda*gradient(xk)*dk)b = lamda;lamda = (lamda + a)/2;continue;endif ~(gradient(xk+lamda*dk)*dk >= c2*gradient(xk)*dk)a = lamda;lamda = min([2*lamda,(b+lamda)/2]);continue;endbreak;
end
endfunction f = fun(x)
f = 10*(x(1)-1)^2 + (x(2)+1)^4; 
endfunction g = gradient(x)%这是行向量g = zeros(1,2); g(1)=20*(x(1)-1); g(2) = 4*(x(2)+1)^3; 
end function hk = get_hk(h,x,g)%进来的是列向量
miu = 1 + g.'*h*g/(x.'*g);
fenzi = miu*x*x.'-h*g*x.'-x*g.'*h;
hk = h + fenzi/(x.'*g);
end

这篇关于大连理工大学 2021年最优化方法大作业(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/727596

相关文章

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Qt 中集成mqtt协议的使用方法

《Qt中集成mqtt协议的使用方法》文章介绍了如何在工程中引入qmqtt库,并通过声明一个单例类来暴露订阅到的主题数据,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一,引入qmqtt 库二,使用一,引入qmqtt 库我是将整个头文件/源文件都添加到了工程中进行编译,这样 跨平台

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr