大连理工大学 2021年最优化方法大作业(2)

2024-02-20 08:30

本文主要是介绍大连理工大学 2021年最优化方法大作业(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

接上一篇文章,这次分享一下其他的三种算法,上一篇编写的不精确一维线搜索需要用到,链接在这:大连理工大学 2021年最优化方法大作业(1)_JiangTesla的博客-CSDN博客

下一道题在这:大连理工大学2021最优化方法大作业(3)_JiangTesla的博客-CSDN博客

2022题目的小补充大连理工大学2022上半年最优化方法大作业_Jiang_Tesla的博客-CSDN博客

目录

 1.牛顿法

2.共轭梯度法

3.BFGS


 1.牛顿法

牛顿法的迭代方式非常简单粗暴,不需要一维搜索,直接梯度乘上hesse阵的逆就行了,框图逻辑见下图(图画的不太对,循环那个箭头应该指向菱形上端,相信各位可以理解)

 直接上代码了

%下面3个是输入
x = [0;0];
eps = 0.0001;
start_newton(x,eps);%题目方程式
function f = fun(x) 
f = 10*(x(1)-1)^2 + (x(2)+1)^4; 
end%题目方程式的hesse阵
function h = hesse(x) h = zeros(2,2); h(1,1)=2+400*(3*x(1)^2-x(2)); h(1,2)=-400*x(1);h(2,1)=-400*x(1);h(2,2)=200;end 题目方程式的梯度
function g = grad(x) g = zeros(2,1); g(1)=20*(x(1)-1); g(2) = 4*(x(2)+1)^3; end %牛顿法迭代开始
function start_newton(x0,eps) gk = grad(x0);res = norm(gk);k = 0; while res > eps fprintf('The %d-th iteration, the residual is %f\n',k,res); fprintf('x=[%f,%f],min(f):%f\n',x0(1),x0(2),fun(x0));fprintf('**********************************************\n');hk = (hesse(x0))^(-1);%hesse阵的逆x0=x0-hk*gk;k = k+1;gk = grad(x0);res = norm(gk); end fprintf('The %d-th iteration, the residual is %f\n',k,res); fprintf('x=[%f,%f],min(f):%f\n',x0(1),x0(2),fun(x0));end

2.共轭梯度法

书上有现成的框图,我就不画了

可以看出来,共轭梯度法的搜索方向是一个一个生成的,对于n维问题共轭方向只有n个,所以计算n步之后,以xn为起点,重新生成共轭方向继续迭代,下面上代码,这是共轭方向法的核心,fun(x)还有梯度函数,一维搜索函数(大连理工大学 2021年最优化方法大作业(1)_JiangTesla的博客-CSDN博客)都和之前的一样,直接复制粘在同一个文件里就行,我就不总粘重复的代码了。

function  start_conjungate_gradient(x0, eps)
n=2%二维问题,所以n等于2
g0 = gradient(x0);%自己定义的梯度函数
s0 = -(g0.');
k = 0;
count = 0;%计算迭代次数
lambda = wolfe_powell(x0,s0);%这个函数我在上一个文章写了,就是一维搜索
x1 = x0 +lambda*s0;
g1 = gradient(x1);
while (norm(g1) > eps)if k<n-1 %判断是否已经生成了n个共轭方向v = (norm(g1))^2/(norm(g0)^2);s1 = -g1 + s0*v;k = k+1;x0 = x1;g0 = gradient(x0);s0 = s1;lambda = wolfe_powell(x0,s0);x1 = x0 +lambda*s0;g1 = gradient(x1);else x0 = x1;g0 = gradient(x0);s0 = -(g0.');lambda = wolfe_powell(x0,s0);x1 = x0 +lambda*s0;g1 = gradient(x1);k = 0;endcount=count+1;fprintf('The %d-th iteration, the residual is %f\n',count,norm(g1)); fprintf('x=[%f,%f],min(f):%f\n',x0(1),x0(2),fun(x0));fprintf('**********************************************\n');
endfprintf('The %d-th iteration, the residual is %f\n',count,norm(g1)); fprintf('x=[%f,%f],min(f):%f\n',x0(1),x0(2),fun(x0));
end

3.BFGS

先上流程图

H(k+1)的公式懒得打了,书上都有P137,

因为H(k+1)的计算公式比较复杂,我先写了个小函数用来计算

function hk = get_hk(h,x,g)%进来的是列向量
miu = 1 + g.'*h*g/(x.'*g);
fenzi = miu*x*x.'-h*g*x.'-x*g.'*h;
hk = h + fenzi/(x.'*g);
end

下面是核心代码

function  start_bfgs(x0, eps)
n=2;%二维所以是2
g0 = gradient(x0);
h0 = eye(2,2);
s0 = -h0*g0.';
k = 0;
count = 0;
lambda = wolfe_powell(x0,s0);
x1 = x0 +lambda*s0;
g1 = gradient(x1);
while (norm(g1) > eps)if k<n-1detax = x1 - x0;%下面是计算H(k+1)的步骤detag = g1.' - g0.';h1 = get_hk(h0,detax,detag);%上面定义的计算函数s1 = -h1*g1.';k = k+1;x0 = x1;g0 = gradient(x0);s0 = s1;h0 = h1;lambda = wolfe_powell(x0,s0);x1 = x0 +lambda*s0;g1 = gradient(x1);else x0 = x1;g0 = gradient(x0);h0 = eye(2,2);s0 = -h0*g0.';lambda = wolfe_powell(x0,s0);x1 = x0 +lambda*s0;g1 = gradient(x1);k = 0;endcount=count+1;fprintf('The %d-th iteration, the residual is %f\n',count,norm(g1)); fprintf('x=[%f,%f],min(f):%f\n',x0(1),x0(2),fun(x0));fprintf('**********************************************\n');
endfprintf('The %d-th iteration, the residual is %f\n',count,norm(g1)); fprintf('x=[%f,%f],min(f):%f\n',x1(1),x1(2),fun(x1));
end

最后给出一个bfgs总体代码,方便大家对其他方法的重组

x0 = [0;0];
eps = 1e-4;
start_bfgs(x0, eps);function  start_bfgs(x0, eps)
n=2;
g0 = gradient(x0);
h0 = eye(2,2);
s0 = -h0*g0.';
k = 0;
count = 0;
lambda = wolfe_powell(x0,s0);
x1 = x0 +lambda*s0;
g1 = gradient(x1);
while (norm(g1) > eps)if k<n-1detax = x1 - x0;detag = g1.' - g0.';h1 = get_hk(h0,detax,detag);s1 = -h1*g1.';k = k+1;x0 = x1;g0 = gradient(x0);s0 = s1;h0 = h1;lambda = wolfe_powell(x0,s0);x1 = x0 +lambda*s0;g1 = gradient(x1);else x0 = x1;g0 = gradient(x0);h0 = eye(2,2);s0 = -h0*g0.';lambda = wolfe_powell(x0,s0);x1 = x0 +lambda*s0;g1 = gradient(x1);k = 0;endcount=count+1;fprintf('The %d-th iteration, the residual is %f\n',count,norm(g1)); fprintf('x=[%f,%f],min(f):%f\n',x0(1),x0(2),fun(x0));fprintf('**********************************************\n');
endfprintf('The %d-th iteration, the residual is %f\n',count,norm(g1)); fprintf('x=[%f,%f],min(f):%f\n',x1(1),x1(2),fun(x1));
endfunction lamda = wolfe_powell(xk,dk)
c1 = 0.1;c2=0.5;
a = 0; b =Inf;
lamda = 1;
while(1)if ~(fun(xk+lamda*dk)-fun(xk) <= c1*lamda*gradient(xk)*dk)b = lamda;lamda = (lamda + a)/2;continue;endif ~(gradient(xk+lamda*dk)*dk >= c2*gradient(xk)*dk)a = lamda;lamda = min([2*lamda,(b+lamda)/2]);continue;endbreak;
end
endfunction f = fun(x)
f = 10*(x(1)-1)^2 + (x(2)+1)^4; 
endfunction g = gradient(x)%这是行向量g = zeros(1,2); g(1)=20*(x(1)-1); g(2) = 4*(x(2)+1)^3; 
end function hk = get_hk(h,x,g)%进来的是列向量
miu = 1 + g.'*h*g/(x.'*g);
fenzi = miu*x*x.'-h*g*x.'-x*g.'*h;
hk = h + fenzi/(x.'*g);
end

这篇关于大连理工大学 2021年最优化方法大作业(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/727596

相关文章

作业提交过程之HDFSMapReduce

作业提交全过程详解 (1)作业提交 第1步:Client调用job.waitForCompletion方法,向整个集群提交MapReduce作业。 第2步:Client向RM申请一个作业id。 第3步:RM给Client返回该job资源的提交路径和作业id。 第4步:Client提交jar包、切片信息和配置文件到指定的资源提交路径。 第5步:Client提交完资源后,向RM申请运行MrAp

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

模版方法模式template method

学习笔记,原文链接 https://refactoringguru.cn/design-patterns/template-method 超类中定义了一个算法的框架, 允许子类在不修改结构的情况下重写算法的特定步骤。 上层接口有默认实现的方法和子类需要自己实现的方法

使用JS/Jquery获得父窗口的几个方法(笔记)

<pre name="code" class="javascript">取父窗口的元素方法:$(selector, window.parent.document);那么你取父窗口的父窗口的元素就可以用:$(selector, window.parent.parent.document);如题: $(selector, window.top.document);//获得顶级窗口里面的元素 $(