AQS分析(AbstractQueuedSynchronizer)(三)

2024-02-19 22:48

本文主要是介绍AQS分析(AbstractQueuedSynchronizer)(三),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、AQS是什么

  AQS同步器是Java并发编程的基础,从资源共享的角度分成独占和共享两种模式,像ReentrantLock、ThreadPoolExecutor、CountDownLatch等都是基于AQS来实现的,如图:

2、AQS同步队列的基本结构

  AQS维护了一个头节点(head)和一个尾节点(tail)结构的双向链表,当一个线程获取锁失败时,会将该线程打包成一个Node节点,挂到同步队列尾节点    

private transient volatile Node head;//同步队列头结点
private transient volatile Node tail;//同步队列尾结点
private volatile int state;//同步状态 

 2.1、同步队列内部结构

 

2.2、获取同步状态失败,将当前线程和节点模式打包成一个节点,放入同步队列尾部 

2.3、前驱节点是头节点并且获取同步状态成功,设置当前节点为头节点,并将前驱节点指针清空,方便GC回收

2.1、Node节点类(双向链表挂在同步器中)  

static final class Node {static final Node SHARED = new Node();//共享模式static final Node EXCLUSIVE = null;//独占模式static final int CANCELLED =  1;//线程已取消static final int SIGNAL    = -1;//后继线程需要取消挂起static final int CONDITION = -2;//线程正在等待条件static final int PROPAGATE = -3;volatile int waitStatus;volatile Node prev;//前驱结点volatile Node next;//后继结点volatile Thread thread;//当前线程Node nextWaiter;final boolean isShared() {return nextWaiter == SHARED;}//获取前驱节点final Node predecessor() throws NullPointerException {Node p = prev;if (p == null)throw new NullPointerException();elsereturn p;}Node() {}//当前线程和节点模式Node(Thread thread, Node mode) {this.nextWaiter = mode;this.thread = thread;}Node(Thread thread, int waitStatus) {this.waitStatus = waitStatus;this.thread = thread;}
}

2.2、state同步状态(AQS的重要成员变量)

//同步状态    
private volatile int state;
//获取同步状态
protected final int getState() {return state;
}
//设置同步状态
protected final void setState(int newState) {state = newState;
}
//CAS设置同步状态
protected final boolean compareAndSetState(int expect, int update) {// See below for intrinsics setup to support thisreturn unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}

3、子类需重写的方法

 AQS使用了模板方法设计模式,核心框架JDK已经写好,子类(自定义同步器)只需重写如下几个方法,即可实现不同的同步器:

//用于判断当前方法是否被线程独占,独占锁需重写
protected boolean isHeldExclusively() {throw new UnsupportedOperationException();
}//独占式获取锁
protected boolean tryAcquire(int arg) {throw new UnsupportedOperationException();
}//独占式释放锁
protected boolean tryRelease(int arg) {throw new UnsupportedOperationException();
}//共享式获取锁
protected int tryAcquireShared(int arg) {throw new UnsupportedOperationException();
}//共享式释放锁
protected int tryReleaseShared(int arg) {throw new UnsupportedOperationException();
}

4、独占模式分析

 4.1、acquire独占锁获取ReentrantLock的lock方法就是调用该方法

1、tryAcquire(子类实现的方法,此时派上用场)

尝试获取同步状态,获取成功则直接使用

2、addWaiter

   将当前线程打包成一个独占模式节点,放入同步队列的尾部

3、acquireQueued

   进入等待状态,直到其他线程唤醒自己

//获取独占锁入口方法
public final void acquire(int arg) {if (!tryAcquire(arg) &&acquireQueued(addWaiter(Node.EXCLUSIVE), arg))selfInterrupt();
}
//放入队列
private Node addWaiter(Node mode) {Node node = new Node(Thread.currentThread(), mode);// 快速尝试将其放入尾部节点Node pred = tail;if (pred != null) {node.prev = pred;if (compareAndSetTail(pred, node)) {pred.next = node;return node;}}enq(node);//循环CAS方式将节点放入队列尾部return node;
}
//入队
private Node enq(final Node node) {for (; ; ) {//循环CAS添加尾部节点Node t = tail;if (t == null) { //队列为空,初始化一个空节点if (compareAndSetHead(new Node()))//CAS防止产生多个队列tail = head;} else {node.prev = t;if (compareAndSetTail(t, node)) {//CAS设置尾节点t.next = node;return t;}}}
}
//阻塞等待
final boolean acquireQueued(final Node node, int arg) {boolean failed = true;try {boolean interrupted = false;//是否被中断for (; ; ) {final Node p = node.predecessor();//获取前驱节点if (p == head && tryAcquire(arg)) {//前驱节点是头节点 且 自己获取到锁setHead(node);//将当前节点设置为头节点p.next = null; //便于GC回收以前的头节点failed = false;return interrupted;}if (shouldParkAfterFailedAcquire(p, node) &&//设置前驱节点状态parkAndCheckInterrupt())//阻塞线程interrupted = true;//被中断一次就设置为true}} finally {if (failed)cancelAcquire(node);}
}
//设置前驱节点
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {int ws = pred.waitStatus;//前驱节点的状态if (ws == Node.SIGNAL)return true;if (ws > 0) {//目的是为了剔除取消的节点do {node.prev = pred = pred.prev;} while (pred.waitStatus > 0);//找到一个没有被取消的节点pred.next = node;} else {compareAndSetWaitStatus(pred, ws, Node.SIGNAL);//将前驱节点设置为SIGNAL}return false;
}
//阻塞线程
private final boolean parkAndCheckInterrupt() {LockSupport.park(this);//阻塞线程,直到被唤醒(发生中断或被其他线程调用unpark)return Thread.interrupted();//线程是否中断
}

4.2、release独占锁释放(ReentrantLock的unlock方法就是调用该方法)

1、tryRelease(子类实现的方法,自定义释放的逻辑)

 尝试获取同步状态,成功则继续

2、unparkSuccessor

  找到头节点,唤醒后继线程   

public final boolean release(int arg) {if (tryRelease(arg)) {Node h = head;//找到头节点if (h != null && h.waitStatus != 0)unparkSuccessor(h);//唤醒后继线程return true;}return false;
}
//唤醒后继线程
private void unparkSuccessor(Node node) {/** If status is negative (i.e., possibly needing signal) try* to clear in anticipation of signalling.  It is OK if this* fails or if status is changed by waiting thread.*/int ws = node.waitStatus;if (ws < 0)compareAndSetWaitStatus(node, ws, 0);Node s = node.next;//获取后继节点if (s == null || s.waitStatus > 0) {s = null;for (Node t = tail; t != null && t != node; t = t.prev)if (t.waitStatus <= 0)s = t;}if (s != null)LockSupport.unpark(s.thread);//唤醒后继线程
}

5、共享模式分析

5.1、acquireSharedInterruptibly共享锁获取(Semaphore的acquire方法就是调用该方法)

1、线程是否中断,是则抛出异常

2、tryAcquireShared(子类实现的方法)

尝试获取资源,成功直接返回,失败进入下面流程

3、doAcquireSharedInterruptibly(和独占锁类似) 

将当前线程打包成共享节点,放入同步队列并阻塞,直到被唤醒并成功获取到资源才返回 

public final void acquireSharedInterruptibly(int arg)throws InterruptedException {if (Thread.interrupted())throw new InterruptedException();if (tryAcquireShared(arg) < 0)//子类实现的方法,一般用来判断是否还有资源doAcquireSharedInterruptibly(arg);//放入同步队列等待
}private void doAcquireSharedInterruptibly(int arg)throws InterruptedException {final Node node = addWaiter(Node.SHARED);//将当前线程打包成一个共享节点,放入同步队列尾部boolean failed = true;try {for (;;) {//自旋final Node p = node.predecessor();//获取前驱节点if (p == head) {//前驱节点是头节点int r = tryAcquireShared(arg);//尝试获取资源if (r >= 0) {//大于0代表有资源可用setHeadAndPropagate(node, r);//设置自己为head,还有剩余资源则唤醒后继线程p.next = null; // help GCfailed = false;return;}}if (shouldParkAfterFailedAcquire(p, node) &&//设置前驱节点状态parkAndCheckInterrupt())//阻塞线程,等待其他线程唤醒或线程被中断throw new InterruptedException();}} finally {if (failed)cancelAcquire(node);}
}

5.2、releaseShared共享锁释放(Semaphore的release方法就是调用该方法)

public final boolean releaseShared(int arg) {if (tryReleaseShared(arg)) {doReleaseShared();return true;}return false;
}private void doReleaseShared() {for (;;) {Node h = head;if (h != null && h != tail) {int ws = h.waitStatus;if (ws == Node.SIGNAL) {if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))continue;            // loop to recheck casesunparkSuccessor(h);//唤醒后继线程}else if (ws == 0 &&!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))continue;                // loop on failed CAS}if (h == head)                   // loop if head changedbreak;}
}

 

 我的博客园

 


待续...

 

 

 

 

 

 

 

 

这篇关于AQS分析(AbstractQueuedSynchronizer)(三)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/726243

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通过IO+EXIT中断的方式进行霍尔传感器数据的读取。将IO口配置为上升沿+下降沿中断触发的方式。当霍尔传感器信号发生发生信号的变化就会触发中断在中断

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除

PostgreSQL核心功能特性与使用领域及场景分析

PostgreSQL有什么优点? 开源和免费 PostgreSQL是一个开源的数据库管理系统,可以免费使用和修改。这降低了企业的成本,并为开发者提供了一个活跃的社区和丰富的资源。 高度兼容 PostgreSQL支持多种操作系统(如Linux、Windows、macOS等)和编程语言(如C、C++、Java、Python、Ruby等),并提供了多种接口(如JDBC、ODBC、ADO.NET等

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据