AQS分析(AbstractQueuedSynchronizer)(三)

2024-02-19 22:48

本文主要是介绍AQS分析(AbstractQueuedSynchronizer)(三),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、AQS是什么

  AQS同步器是Java并发编程的基础,从资源共享的角度分成独占和共享两种模式,像ReentrantLock、ThreadPoolExecutor、CountDownLatch等都是基于AQS来实现的,如图:

2、AQS同步队列的基本结构

  AQS维护了一个头节点(head)和一个尾节点(tail)结构的双向链表,当一个线程获取锁失败时,会将该线程打包成一个Node节点,挂到同步队列尾节点    

private transient volatile Node head;//同步队列头结点
private transient volatile Node tail;//同步队列尾结点
private volatile int state;//同步状态 

 2.1、同步队列内部结构

 

2.2、获取同步状态失败,将当前线程和节点模式打包成一个节点,放入同步队列尾部 

2.3、前驱节点是头节点并且获取同步状态成功,设置当前节点为头节点,并将前驱节点指针清空,方便GC回收

2.1、Node节点类(双向链表挂在同步器中)  

static final class Node {static final Node SHARED = new Node();//共享模式static final Node EXCLUSIVE = null;//独占模式static final int CANCELLED =  1;//线程已取消static final int SIGNAL    = -1;//后继线程需要取消挂起static final int CONDITION = -2;//线程正在等待条件static final int PROPAGATE = -3;volatile int waitStatus;volatile Node prev;//前驱结点volatile Node next;//后继结点volatile Thread thread;//当前线程Node nextWaiter;final boolean isShared() {return nextWaiter == SHARED;}//获取前驱节点final Node predecessor() throws NullPointerException {Node p = prev;if (p == null)throw new NullPointerException();elsereturn p;}Node() {}//当前线程和节点模式Node(Thread thread, Node mode) {this.nextWaiter = mode;this.thread = thread;}Node(Thread thread, int waitStatus) {this.waitStatus = waitStatus;this.thread = thread;}
}

2.2、state同步状态(AQS的重要成员变量)

//同步状态    
private volatile int state;
//获取同步状态
protected final int getState() {return state;
}
//设置同步状态
protected final void setState(int newState) {state = newState;
}
//CAS设置同步状态
protected final boolean compareAndSetState(int expect, int update) {// See below for intrinsics setup to support thisreturn unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}

3、子类需重写的方法

 AQS使用了模板方法设计模式,核心框架JDK已经写好,子类(自定义同步器)只需重写如下几个方法,即可实现不同的同步器:

//用于判断当前方法是否被线程独占,独占锁需重写
protected boolean isHeldExclusively() {throw new UnsupportedOperationException();
}//独占式获取锁
protected boolean tryAcquire(int arg) {throw new UnsupportedOperationException();
}//独占式释放锁
protected boolean tryRelease(int arg) {throw new UnsupportedOperationException();
}//共享式获取锁
protected int tryAcquireShared(int arg) {throw new UnsupportedOperationException();
}//共享式释放锁
protected int tryReleaseShared(int arg) {throw new UnsupportedOperationException();
}

4、独占模式分析

 4.1、acquire独占锁获取ReentrantLock的lock方法就是调用该方法

1、tryAcquire(子类实现的方法,此时派上用场)

尝试获取同步状态,获取成功则直接使用

2、addWaiter

   将当前线程打包成一个独占模式节点,放入同步队列的尾部

3、acquireQueued

   进入等待状态,直到其他线程唤醒自己

//获取独占锁入口方法
public final void acquire(int arg) {if (!tryAcquire(arg) &&acquireQueued(addWaiter(Node.EXCLUSIVE), arg))selfInterrupt();
}
//放入队列
private Node addWaiter(Node mode) {Node node = new Node(Thread.currentThread(), mode);// 快速尝试将其放入尾部节点Node pred = tail;if (pred != null) {node.prev = pred;if (compareAndSetTail(pred, node)) {pred.next = node;return node;}}enq(node);//循环CAS方式将节点放入队列尾部return node;
}
//入队
private Node enq(final Node node) {for (; ; ) {//循环CAS添加尾部节点Node t = tail;if (t == null) { //队列为空,初始化一个空节点if (compareAndSetHead(new Node()))//CAS防止产生多个队列tail = head;} else {node.prev = t;if (compareAndSetTail(t, node)) {//CAS设置尾节点t.next = node;return t;}}}
}
//阻塞等待
final boolean acquireQueued(final Node node, int arg) {boolean failed = true;try {boolean interrupted = false;//是否被中断for (; ; ) {final Node p = node.predecessor();//获取前驱节点if (p == head && tryAcquire(arg)) {//前驱节点是头节点 且 自己获取到锁setHead(node);//将当前节点设置为头节点p.next = null; //便于GC回收以前的头节点failed = false;return interrupted;}if (shouldParkAfterFailedAcquire(p, node) &&//设置前驱节点状态parkAndCheckInterrupt())//阻塞线程interrupted = true;//被中断一次就设置为true}} finally {if (failed)cancelAcquire(node);}
}
//设置前驱节点
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {int ws = pred.waitStatus;//前驱节点的状态if (ws == Node.SIGNAL)return true;if (ws > 0) {//目的是为了剔除取消的节点do {node.prev = pred = pred.prev;} while (pred.waitStatus > 0);//找到一个没有被取消的节点pred.next = node;} else {compareAndSetWaitStatus(pred, ws, Node.SIGNAL);//将前驱节点设置为SIGNAL}return false;
}
//阻塞线程
private final boolean parkAndCheckInterrupt() {LockSupport.park(this);//阻塞线程,直到被唤醒(发生中断或被其他线程调用unpark)return Thread.interrupted();//线程是否中断
}

4.2、release独占锁释放(ReentrantLock的unlock方法就是调用该方法)

1、tryRelease(子类实现的方法,自定义释放的逻辑)

 尝试获取同步状态,成功则继续

2、unparkSuccessor

  找到头节点,唤醒后继线程   

public final boolean release(int arg) {if (tryRelease(arg)) {Node h = head;//找到头节点if (h != null && h.waitStatus != 0)unparkSuccessor(h);//唤醒后继线程return true;}return false;
}
//唤醒后继线程
private void unparkSuccessor(Node node) {/** If status is negative (i.e., possibly needing signal) try* to clear in anticipation of signalling.  It is OK if this* fails or if status is changed by waiting thread.*/int ws = node.waitStatus;if (ws < 0)compareAndSetWaitStatus(node, ws, 0);Node s = node.next;//获取后继节点if (s == null || s.waitStatus > 0) {s = null;for (Node t = tail; t != null && t != node; t = t.prev)if (t.waitStatus <= 0)s = t;}if (s != null)LockSupport.unpark(s.thread);//唤醒后继线程
}

5、共享模式分析

5.1、acquireSharedInterruptibly共享锁获取(Semaphore的acquire方法就是调用该方法)

1、线程是否中断,是则抛出异常

2、tryAcquireShared(子类实现的方法)

尝试获取资源,成功直接返回,失败进入下面流程

3、doAcquireSharedInterruptibly(和独占锁类似) 

将当前线程打包成共享节点,放入同步队列并阻塞,直到被唤醒并成功获取到资源才返回 

public final void acquireSharedInterruptibly(int arg)throws InterruptedException {if (Thread.interrupted())throw new InterruptedException();if (tryAcquireShared(arg) < 0)//子类实现的方法,一般用来判断是否还有资源doAcquireSharedInterruptibly(arg);//放入同步队列等待
}private void doAcquireSharedInterruptibly(int arg)throws InterruptedException {final Node node = addWaiter(Node.SHARED);//将当前线程打包成一个共享节点,放入同步队列尾部boolean failed = true;try {for (;;) {//自旋final Node p = node.predecessor();//获取前驱节点if (p == head) {//前驱节点是头节点int r = tryAcquireShared(arg);//尝试获取资源if (r >= 0) {//大于0代表有资源可用setHeadAndPropagate(node, r);//设置自己为head,还有剩余资源则唤醒后继线程p.next = null; // help GCfailed = false;return;}}if (shouldParkAfterFailedAcquire(p, node) &&//设置前驱节点状态parkAndCheckInterrupt())//阻塞线程,等待其他线程唤醒或线程被中断throw new InterruptedException();}} finally {if (failed)cancelAcquire(node);}
}

5.2、releaseShared共享锁释放(Semaphore的release方法就是调用该方法)

public final boolean releaseShared(int arg) {if (tryReleaseShared(arg)) {doReleaseShared();return true;}return false;
}private void doReleaseShared() {for (;;) {Node h = head;if (h != null && h != tail) {int ws = h.waitStatus;if (ws == Node.SIGNAL) {if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))continue;            // loop to recheck casesunparkSuccessor(h);//唤醒后继线程}else if (ws == 0 &&!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))continue;                // loop on failed CAS}if (h == head)                   // loop if head changedbreak;}
}

 

 我的博客园

 


待续...

 

 

 

 

 

 

 

 

这篇关于AQS分析(AbstractQueuedSynchronizer)(三)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/726243

相关文章

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

Spring、Spring Boot、Spring Cloud 的区别与联系分析

《Spring、SpringBoot、SpringCloud的区别与联系分析》Spring、SpringBoot和SpringCloud是Java开发中常用的框架,分别针对企业级应用开发、快速开... 目录1. Spring 框架2. Spring Boot3. Spring Cloud总结1. Sprin

Spring 中 BeanFactoryPostProcessor 的作用和示例源码分析

《Spring中BeanFactoryPostProcessor的作用和示例源码分析》Spring的BeanFactoryPostProcessor是容器初始化的扩展接口,允许在Bean实例化前... 目录一、概览1. 核心定位2. 核心功能详解3. 关键特性二、Spring 内置的 BeanFactory

MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析

《MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析》本文将详细讲解MyBatis-Plus中的lambdaUpdate用法,并提供丰富的案例来帮助读者更好地理解和应... 目录深入探索MyBATis-Plus中Service接口的lambdaUpdate用法及示例案例背景

MyBatis-Plus中静态工具Db的多种用法及实例分析

《MyBatis-Plus中静态工具Db的多种用法及实例分析》本文将详细讲解MyBatis-Plus中静态工具Db的各种用法,并结合具体案例进行演示和说明,具有很好的参考价值,希望对大家有所帮助,如有... 目录MyBATis-Plus中静态工具Db的多种用法及实例案例背景使用静态工具Db进行数据库操作插入

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C