Pytorch 0.4.0迁移指南(与之前版本编程上的不同点)

2024-02-19 15:38

本文主要是介绍Pytorch 0.4.0迁移指南(与之前版本编程上的不同点),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

版权说明:本篇文章为本人原创内容,转载请注明出处,谢谢合作!

2018年4月25号,官方发布Pytorch0.4.0版本,此版本除了支持Windows外,与之前的Pytorch版本也有诸多不同,主要表现在编程方面。因此该指南主要用来介绍Pytorch0.4.0代码方面需要注意的地方:
####1. 弃用Variables并与Tensors合并
之前版本,最终的输入数据必须转化为Variable的形式,而在Pytorch0.4.0版中,torch.Tensor包括了torch.autograd.Variable,已经不需要转化为Variable的形式。
type()的功能也变了,它不会再返回数据的类型,需要用x.type()代替。

>>>x = torch.DoubleTensor([1, 1, 1])
>>>print(type(x))<class ‘torch.Tensor’>#不再返回数据类型
>>>print(x.type())<class ‘torch.DoubleTensor’>#能返回数据类型

####2. 支持零维Tensors

>>>torch.tensor(3.1416).size()
Torch.Size([])  #零维张量

####3. 弃用volatile
之前版本的volatitle=True 相当于requires_grad=False,一般用于测试的时候不需要进行梯度计算,这样做能减少内存使用。新版中使用torch.no_grad()代替。
####4.新增dtypes、devices和numpy风格的Tensor
如:device = torch.device(“cuda” if torch.cuda.is_available() else “cpu”),会依据你的计算机配置自动选择CPU还是GPU运算。
####用一个例子来对比Pytorch 0.4.0代码上需要注意的地方:
0.3.1(老版本):

model = CNN()if use_cuda:model = model.cuda()# 训练total_loss = 0for input, target in train_loader:input, target = Variable(input), Variable(target) #需转化为Variablehidden = Variable(torch.zeros(*h_shape))  # 定义是否使用GPUif use_cuda:input, target, hidden = input.cuda(), target.cuda(), hidden.cuda()...  # 获得loss的值total_loss += loss.data[0]# 测试for input, target in test_loader:input = Variable(input, volatile=True)if use_cuda:......

0.4.0(新版本):

  # 定义device,是否使用GPU,依据计算机配置自动会选择device = torch.device("cuda" if torch.cuda.is_available() else "cpu")#用.to(device)来决定模型使用GPU还是CPUmodel = CNN().to(device)# 训练total_loss = 0for input, target in train_loader:#不需要转化为Variable,直接用Tensors作为输入,用.to(device)来决定使用GPU还是CPUinput, target = input.to(device), target.to(device)hidden = input.new_zeros(*h_shape)  ...  # 获得loss值,也与老版本不同total_loss += loss.item()          # 测试with torch.no_grad():      # 测试时不会进行梯度计算,节约内存for input, target in test_loader:...

这篇关于Pytorch 0.4.0迁移指南(与之前版本编程上的不同点)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/725118

相关文章

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Java堆转储文件之1.6G大文件处理完整指南

《Java堆转储文件之1.6G大文件处理完整指南》堆转储文件是优化、分析内存消耗的重要工具,:本文主要介绍Java堆转储文件之1.6G大文件处理的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言文件为什么这么大?如何处理这个文件?分析文件内容(推荐)删除文件(如果不需要)查看错误来源如何避

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

MySQL 迁移至 Doris 最佳实践方案(最新整理)

《MySQL迁移至Doris最佳实践方案(最新整理)》本文将深入剖析三种经过实践验证的MySQL迁移至Doris的最佳方案,涵盖全量迁移、增量同步、混合迁移以及基于CDC(ChangeData... 目录一、China编程JDBC Catalog 联邦查询方案(适合跨库实时查询)1. 方案概述2. 环境要求3.

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

Java操作Word文档的全面指南

《Java操作Word文档的全面指南》在Java开发中,操作Word文档是常见的业务需求,广泛应用于合同生成、报表输出、通知发布、法律文书生成、病历模板填写等场景,本文将全面介绍Java操作Word文... 目录简介段落页头与页脚页码表格图片批注文本框目录图表简介Word编程最重要的类是org.apach