快速求第n个卡特兰数模板

2024-02-19 14:38
文章标签 模板 快速 卡特兰

本文主要是介绍快速求第n个卡特兰数模板,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

卡特兰数的应用:https://blog.csdn.net/SunPeishuai/article/details/81407126

快速求第n位卡特兰数 模板:

递推法:

/*通过递推 求卡特兰数的方法*/
#include<cstdio>
#include<iostream>
using namespace std;
int main()
{int n=0;scanf("%d", &n);long long total = 1;
/*       公式 Cn=C(2n,n)/(n+1)     */for (int i = 0; i < n; i++){total = total * (2 * n - i) / (i + 1);}printf("%lld",( total / (n + 1)));system("pause");return 0;}

 

 

 

 

 

 

 

#include<stdio.h>
//*******************************
//打表卡特兰数
//第 n个 卡特兰数存在a[n]中,a[n][0]表示长度;
//注意数是倒着存的,个位是 a[n][1] 输出时注意倒过来。
//*********************************
int a[105][100];
void ktl()
{int i,j,yu,len;a[2][0]=1;a[2][1]=2;a[1][0]=1;a[1][1]=1;len=1;for(i=3;i<101;i++){yu=0;for(j=1;j<=len;j++){int t=(a[i-1][j])*(4*i-2)+yu;yu=t/10;a[i][j]=t%10;}while(yu){a[i][++len]=yu%10;yu/=10;}for(j=len;j>=1;j--){int t=a[i][j]+yu*10;a[i][j]=t/(i+1);yu = t%(i+1);}while(!a[i][len]){len--;}a[i][0]=len;}}
int main()
{ktl();int T, n;scanf("%d", &T);while(T--){scanf("%d",&n);for(int i=a[n][0];i>0;i--){printf("%d",a[n][i]);}puts("");}return 0;
}
1

 

MOD1e9+7

模板:

#include <iostream>
#include <cmath>
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <set>
#include <list>
#include <queue>
#include <stack>
#include <vector>
#include <algorithm>
#define ULL unsigned long long
using namespace std;long long n;
const long long M=1000000007;
long long inv[1000010];
long long last,now=1;void init()
{inv[1]=1;for(int i=2;i<=n+1;i++)inv[i]=(M-M/i)*inv[M%i]%M;
}int main()
{scanf("%lld",&n);init();for(int i=2;i<=n;i++){last=now;now=last*(4*i-2)%M*inv[i+1]%M;}printf("%lld\n",last);return 0;
}

 

这篇关于快速求第n个卡特兰数模板的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/724986

相关文章

hdu4828(卡特兰数+逆元)

这题的前几个数据分别为1,2,5,14,32......................然后确定这是个卡特兰数列 下面来介绍下卡特兰数,它的递推式为f[i+1] = f[i]*(4*n - 6)/n,其中f[2] = f[3] =1;f[4] = 2;f[5] = 14;f[6] = 32.................................. 但是这题的n太大了,所以要用到逆元,

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

poj 2104 and hdu 2665 划分树模板入门题

题意: 给一个数组n(1e5)个数,给一个范围(fr, to, k),求这个范围中第k大的数。 解析: 划分树入门。 bing神的模板。 坑爹的地方是把-l 看成了-1........ 一直re。 代码: poj 2104: #include <iostream>#include <cstdio>#include <cstdlib>#include <al

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

最大流、 最小费用最大流终极版模板

最大流  const int inf = 1000000000 ;const int maxn = 20000 , maxm = 500000 ;struct Edge{int v , f ,next ;Edge(){}Edge(int _v , int _f , int _next):v(_v) ,f(_f),next(_next){}};int sourse , mee