VFH特征的使用(一)

2024-02-19 00:28
文章标签 使用 特征 vfh

本文主要是介绍VFH特征的使用(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、SHOT特征描述符可视化

C++

#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/io/pcd_io.h>
#include <pcl/features/normal_3d_omp.h>
#include <pcl/registration/correspondence_estimation.h>
#include <boost/thread/thread.hpp>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/registration/transformation_estimation_svd.h> 
#include <pcl/features/3dsc.h>
#include <pcl/keypoints/sift_keypoint.h>
#include <pcl/features/vfh.h>
using namespace std;namespace pcl
{template<>struct SIFTKeypointFieldSelector<PointXYZ>{inline floatoperator () (const PointXYZ& p) const{return p.z;}};
}typedef pcl::PointCloud<pcl::PointXYZ> pointcloud;
typedef pcl::PointCloud<pcl::Normal> pointnormal;
typedef pcl::PointCloud<pcl::VFHSignature308> VFHFeature;VFHFeature::Ptr compute_pfh_feature(pointcloud::Ptr input_cloud, pcl::search::KdTree<pcl::PointXYZ>::Ptr tree)
{pointnormal::Ptr normals(new pointnormal);pcl::NormalEstimationOMP<pcl::PointXYZ, pcl::Normal> n;n.setInputCloud(input_cloud);n.setNumberOfThreads(6);n.setSearchMethod(tree);n.setKSearch(10);n.compute(*normals);pcl::PointCloud<pcl::VFHSignature308>::Ptr vfh_fe_vfh(new pcl::PointCloud<pcl::VFHSignature308>);pcl::VFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::VFHSignature308> vfh;vfh.setInputCloud(input_cloud);vfh.setInputNormals(normals);vfh.setSearchMethod(tree);vfh.compute(*vfh_fe_vfh);return vfh_fe_vfh;}void extract_keypoint(pcl::PointCloud<pcl::PointXYZ>::Ptr& cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr& keypoint)
{pcl::PointCloud<pcl::PointWithScale> result;const float min_scale = 5.f;const int n_octaves = 3;const int n_scales_per_octave = 15;const float min_contrast = 0.01f;pcl::SIFTKeypoint<pcl::PointXYZ, pcl::PointWithScale> sift;sift.setInputCloud(cloud);pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>());sift.setSearchMethod(tree);sift.setScales(min_scale, n_octaves, n_scales_per_octave);sift.setMinimumContrast(min_contrast);sift.compute(result);copyPointCloud(result, *keypoint);}int main(int argc, char** argv)
{pointcloud::Ptr source_cloud(new pointcloud);pointcloud::Ptr target_cloud(new pointcloud);pcl::io::loadPCDFile<pcl::PointXYZ>("pcd/pig_view1.pcd", *source_cloud);pcl::io::loadPCDFile<pcl::PointXYZ>("pcd/pig_view2.pcd", *target_cloud);pcl::PointCloud<pcl::PointXYZ>::Ptr s_k(new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr t_k(new pcl::PointCloud<pcl::PointXYZ>);extract_keypoint(source_cloud, s_k);extract_keypoint(target_cloud, t_k);pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>());VFHFeature::Ptr source_pfh = compute_pfh_feature(s_k, tree);VFHFeature::Ptr target_pfh = compute_pfh_feature(t_k, tree);pcl::registration::CorrespondenceEstimation<pcl::VFHSignature308, pcl::VFHSignature308> crude_cor_est;boost::shared_ptr<pcl::Correspondences> cru_correspondences(new pcl::Correspondences);crude_cor_est.setInputSource(source_pfh);crude_cor_est.setInputTarget(target_pfh);crude_cor_est.determineCorrespondences(*cru_correspondences);Eigen::Matrix4f Transform = Eigen::Matrix4f::Identity();pcl::registration::TransformationEstimationSVD<pcl::PointXYZ, pcl::PointXYZ, float>::Ptr trans(new pcl::registration::TransformationEstimationSVD<pcl::PointXYZ, pcl::PointXYZ, float>);trans->estimateRigidTransformation(*source_cloud, *target_cloud, *cru_correspondences, Transform);boost::shared_ptr<pcl::visualization::PCLVisualizer>viewer(new pcl::visualization::PCLVisualizer("v1"));viewer->setBackgroundColor(0, 0, 0);pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ>target_color(target_cloud, 255, 0, 0);viewer->addPointCloud<pcl::PointXYZ>(target_cloud, target_color, "target cloud");viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "target cloud");pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ>input_color(source_cloud, 0, 255, 0);viewer->addPointCloud<pcl::PointXYZ>(source_cloud, input_color, "input cloud");viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "input cloud");viewer->addCorrespondences<pcl::PointXYZ>(s_k, t_k, *cru_correspondences, "correspondence");while (!viewer->wasStopped()){viewer->spinOnce(100);boost::this_thread::sleep(boost::posix_time::microseconds(100000));}return 0;
}

关键代码解析:

    pcl::PointCloud<pcl::VFHSignature308>::Ptr vfh_fe_vfh(new pcl::PointCloud<pcl::VFHSignature308>);pcl::VFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::VFHSignature308> vfh;vfh.setInputCloud(input_cloud);vfh.setInputNormals(normals);vfh.setSearchMethod(tree);vfh.compute(*vfh_fe_vfh);
  1. pcl::PointCloud<pcl::VFHSignature308>::Ptr vfh_fe_vfh(new pcl::PointCloud<pcl::VFHSignature308>);:这行代码定义了一个指向 pcl::PointCloud<pcl::VFHSignature308> 类型的智能指针 vfh_fe_vfh,用于存储计算得到的VFH描述符。

  2. pcl::VFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::VFHSignature308> vfh;:这行代码创建了一个VFH估计器对象 vfh,用于计算VFH描述符。参数说明如下:

    • pcl::PointXYZ:输入点云的点类型,这里使用的是三维坐标点 PointXYZ
    • pcl::Normal:输入点云的法线类型,用于计算VFH描述符时需要输入点云的法线信息。
    • pcl::VFHSignature308:VFH描述符的类型,这里使用的是308维的VFH描述符。
  3. vfh.setInputCloud(input_cloud);:设置输入点云。input_cloud 是指向输入点云的指针或智能指针,其中包含了点的三维坐标信息。

  4. vfh.setInputNormals(normals);:设置输入法线。normals 是指向输入点云法线的指针或智能指针,其中包含了点云的法线信息。

  5. vfh.setSearchMethod(tree);:设置搜索方法。tree 是指向用于邻域搜索的搜索树对象的指针或智能指针。这个搜索树用于查找每个点的邻域以计算其VFH描述符。

  6. vfh.compute(*vfh_fe_vfh);:计算VFH描述符。这行代码会使用输入的点云和法线信息,以及设置的搜索方法,来计算每个点的VFH描述符,并将结果存储在 vfh_fe_vfh 中。

参数设置的影响如下:

  • 输入点云的质量和分辨率会直接影响到计算得到的VFH描述符的准确性。
  • 输入法线的准确性和一致性对VFH描述符的计算也有很大影响。
  • 搜索方法的选择会影响计算VFH描述符时的邻域搜索效率和准确性,不同的搜索方法可能适用于不同场景下的点云数据。

确保输入数据的准确性和适用性,并根据实际情况选择合适的参数设置,可以得到高质量的VFH描述符。

结果:

我把上面的图片转了个向,可以清楚的发现只有一条对应线 

 

由于VFH(视点特征直方图)是一种全局描述符,它为整个点云生成单一的描述子,这与pcl::SampleConsensusInitialAlignment需要源点云和特征点之间一对一对应的要求不匹配。使用VFH时,你只会得到一个全局特征向量,这意味着不适用于那些需要点对点对应关系的方法。 

可以采用的某些策略:

  1. 使用VFH进行预筛选: 如果有多个目标点云,可以使用VFH描述子来快速筛选出与源点云最相似的目标点云,然后再使用局部特征进行精确配准。这种方法在数据库搜索或者配准多个点云时很有用。

  2. 结合局部特征: 对于每个点云,你可以计算VFH描述子,用于全局配准的粗略定位。随后,对于每个点云,你也计算局部特征描述子,如FPFH,用于精细配准。你可以先用VFH找到大致的配准位置,然后用FPFH做为局部搜索的依据,两者相结合可以提高配准的精度。

  3. 多模态数据融合: 如果你有额外的传感器数据,比如RGB颜色信息,可以考虑将这些信息融入到配准过程中。这种情况下,你可以使用颜色信息来增加点云之间的匹配可能性。

  4. 使用VFH进行快速筛选后的模板匹配: 在已知模板的情况下,可以使用VFH描述子来快速缩小搜索范围,找到最有可能的匹配目标。这种快速筛选可以大幅度减少后续计算量。一旦筛选到合适的候选模板,就可以使用ICP或其他精细配准方法来进行最后的对齐。

这篇关于VFH特征的使用(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/722940

相关文章

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

Spring Boot 集成 Quartz并使用Cron 表达式实现定时任务

《SpringBoot集成Quartz并使用Cron表达式实现定时任务》本篇文章介绍了如何在SpringBoot中集成Quartz进行定时任务调度,并通过Cron表达式控制任务... 目录前言1. 添加 Quartz 依赖2. 创建 Quartz 任务3. 配置 Quartz 任务调度4. 启动 Sprin

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

使用Python实现一个优雅的异步定时器

《使用Python实现一个优雅的异步定时器》在Python中实现定时器功能是一个常见需求,尤其是在需要周期性执行任务的场景下,本文给大家介绍了基于asyncio和threading模块,可扩展的异步定... 目录需求背景代码1. 单例事件循环的实现2. 事件循环的运行与关闭3. 定时器核心逻辑4. 启动与停

如何使用Nginx配置将80端口重定向到443端口

《如何使用Nginx配置将80端口重定向到443端口》这篇文章主要为大家详细介绍了如何将Nginx配置为将HTTP(80端口)请求重定向到HTTPS(443端口),文中的示例代码讲解详细,有需要的小伙... 目录1. 创建或编辑Nginx配置文件2. 配置HTTP重定向到HTTPS3. 配置HTTPS服务器

Java使用ANTLR4对Lua脚本语法校验详解

《Java使用ANTLR4对Lua脚本语法校验详解》ANTLR是一个强大的解析器生成器,用于读取、处理、执行或翻译结构化文本或二进制文件,下面就跟随小编一起看看Java如何使用ANTLR4对Lua脚本... 目录什么是ANTLR?第一个例子ANTLR4 的工作流程Lua脚本语法校验准备一个Lua Gramm