双倍数据速率I/O (ALTDDIO_IN、ALTDDIO_OUT)使用方法

2024-02-18 14:30

本文主要是介绍双倍数据速率I/O (ALTDDIO_IN、ALTDDIO_OUT)使用方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • ALTDDIO特性
  • 应用场景
  • 端口定义
    • 1、ALTDDIO_IN
    • 2、ALTDDIO_OUT
  • DDR I/O时序
  • ip仿真测试

学习双倍数据速率 I/O,在I/O单元(IOE)中实现DDR寄存器。其中
ALTDDIO_IN IP内核实现DDR输入的接口(输入端口)。
ALTDDIO_OUT IP内核实现DDR输出的接口(输出端口)。
ALTDDIO_BIDIR IP内核实现双向DDR输入和输出的接口(双向端口)。

ALTDDIO特性

ALTDDIO_IN IP内核在参考时钟的上升和下降沿接收数据
ALTDDIO_OUT IP内核在参考时钟的上升和下降沿发送数据
ALTDDIO_BIDIR IP内核在参考时钟的上升和下降沿发送和接收数据
总之,数据被锁存在时钟的上升和下降沿

应用场景

DDR寄存器可连接DDR SDRAM、DDR2 SDRAM等存储器器件,也就是用作它们的存储接口,使得它们可以两倍速率读写数据。
在LVDS应用中,经常使用DDR数据来实现高速标准(将DDR I/O寄存器用作SERDES旁路机制)。
不管是DDR还是LVDS都是后续需要掌握的知识。

端口定义

1、ALTDDIO_IN

在这里插入图片描述

datain:管脚到DDR电路的输入数据,可指定数据位宽
.
inclocken:时钟使能信号,高电平时输出以时钟上升沿采样,否则下降沿采样
.
inclock:时钟信号来采样DDR输入数据,inclocken使能有效时,数据的第一个比特在输入时钟的上升沿被采集。否则数据的第一个比特在输入时钟的下降沿被采集。
.
outclock信号寄存数据输出 时钟使能信号
.
aclr:异步清零输入;sclr:同步清零输入;aset:异步置数;sset:同步置数。(清零:计数满置0;置数:计数满输出设定值)
.
dataout_h:采集 在inclock信号上升沿的datain;否之,采集 在clock信号下降沿的datain

2、ALTDDIO_OUT

在这里插入图片描述

dataout_h:outclock上升沿的输入数据,dataout_l:outclock下降沿的输入数据
.
outclock:输出的时钟信号;outclocken:输出时钟使能信号,防止数据被传递。
.
dataout:DDR电路到管脚的输出数据端口。 该选项仅适用于Cyclone III和Cyclone II器件
.
oe:连接到三态输出缓冲区的使能信号,从而对数据被加载到 dataout端口进行控制。(高电平有效,若想低电平有效,取反即可)
.
oe_out:采用三态门的方式进行输出。双向输出端口。
.

DDR I/O时序

ALTDDIO_IN输入时序波形:
可看到neg_reg_out是对下降沿采集的数据进行寄存。
dataoutl:在时钟上升沿采样下降沿寄存的数据。
dataouth:在时钟上升沿采样data的数据。
在这里插入图片描述
ALTDDIO_OUT输出时序波形:
Quartus II软件将oe信号作为高电平有效,因此下图给出的也是高电平有效的情况。
datain_h和datain_l是两路上升沿采样的数据,通过DDIO端口,我们输出一路数据。
dataout可看到,它是在outclock的上升沿和下降沿都进行数据的采样,从而获得了双倍速率数据。
在这里插入图片描述

ip仿真测试

ALTDDIO_IN顶层代码:

module ddr_io(
//ddio_in输入输出input 		sys_rst_n	,	//复位input	      clock,input	[7:0]  datain,input	  inclocken, //高有效output	[7:0]  dataout_h,output	[7:0]  dataout_l);ddio_in u0(.aclr(~sys_rst_n),.inclock(clock),.datain(datain),.inclocken(inclocken),.dataout_h(dataout_h),.dataout_l(dataout_l));endmodule

tb测试代码:


`timescale 1ns/1ns			    //时间单位/精度//------------<模块及端口声明>----------------------------------------
module ddr_io_tb();reg				clock		;
reg				sys_rst_n;
reg		[7:0]	datain	;
reg           inclocken;wire	[7:0]	dataout_h	;
wire	[7:0]   dataout_l	;//------------<例化被测试模块>----------------------------------------ddr_io	inst_ddr_io(.sys_rst_n 	( sys_rst_n)	,.clock 	( clock 	)	,.datain 	( datain 	)	,.inclocken(inclocken),.dataout_h 	( dataout_h )	,.dataout_l 	( dataout_l )
);initial beginclock = 1'b0;					//条件为0sys_rst_n <= 1'b0;inclocken <= 1'b0;datain <= 8'd0;#5								//35个时钟周期sys_rst_n <= 1'b1;				//拉高复位inclocken <= 1'b1;	#10datain = $random % 256;	 //产生8位的随机数#10datain = $random % 256;	#10datain = $random % 256;	#10datain = $random % 256;	#10datain = $random % 256;	#10datain = $random % 256;	#10datain = $random % 256;	#10datain = $random % 256;	#10datain = $random % 256;	#10datain = $random % 256;	#20$stop;
endalways #10 clock = ~clock;		//产生系统时钟,周期20nsendmodule

在这里插入图片描述


ALTDDIO_OUT顶层代码:

module ddr_io(//ddio_out输入输出input 		sys_rst_n	,	//复位input	      clock,input	[7:0]  datain_h,input	[7:0]  datain_l,input	  oe,input	  outclocken,output	[7:0]  oe_out,output	[7:0]  dataout);ddio_out u0(.aclr(~sys_rst_n),.outclock(clock),.datain_h(datain_h),.datain_l(datain_l),.oe(oe),.outclocken(outclocken),.oe_out(oe_out),.dataout(dataout));endmodule

`timescale 1ns/1ns			    //时间单位/精度//------------<模块及端口声明>----------------------------------------
module ddr_io_tb();reg				clock		;
reg				sys_rst_n	;
reg				oe			;
reg		[7:0]	datain_h	;	
reg		[7:0]	datain_l	;wire	[7:0]   oe_out;
wire	[7:0]   dataout		;	
//------------<例化被测试模块>----------------------------------------ddr_io	ddio_inst
(.clock	   (clock	),.sys_rst_n	(sys_rst_n	),.oe			(oe			),.datain_h	(datain_h	),	.datain_l	(datain_l	),.oe_out(oe_out),.dataout	(dataout	)
);//------------<设置初始测试条件>----------------------------------------
initial beginclock = 1'b0;					    //初始条件为0sys_rst_n <= 1'b0;				oe <= 1'b0;	datain_h <= 8'd0;datain_l <= 8'd0;#10								  sys_rst_n <= 1'b1;#10oe <= 1'b1;	#100oe <= 1'b0;		#20$stop;	
endalways #10 clock = ~clock;		    //系统时钟,周期20nsalways #20 datain_h = $random  % 256;   //每20ns生成一个0~255的随机数 
always #20 datain_l = $random  % 256;   //每20ns生成一个0~255的随机数 endmodule

在这里插入图片描述

根据上面的原理,手写代码实现时钟上下沿采样数据,达到一个clk双倍数据速率传输

module ddr_io(//ddio_out输入输出input 		sys_rst_n,	//复位input	      clock,input	[7:0]  datain_h,input	[7:0]  datain_l,input	  oe,output   	[7:0]  dataout
);reg flag1;
reg flag2;
wire flag;//上升沿二分频
always @(posedge clock or negedge sys_rst_n) if (!sys_rst_n)flag1 <= 0;elseflag1 <= ~flag1;//下降沿二分频
always @(negedge clock or negedge sys_rst_n) if (!sys_rst_n)flag2 <= 0;else flag2 <= ~flag2;assign flag = flag1^flag2;assign dataout = oe ? (flag ? datain_h : datain_l) : 0;endmodule

`timescale 1ns/1ns			    //时间单位/精度//------------<模块及端口声明>----------------------------------------
module ddr_io_tb();reg				clock		;
reg				sys_rst_n	;
reg				oe			;
reg		[7:0]	datain_h	;	
reg		[7:0]	datain_l	;wire	[7:0]   dataout		;	
//------------<例化被测试模块>----------------------------------------ddr_io	ddio_inst
(.clock	   (clock	),.sys_rst_n	(sys_rst_n	),.oe			(oe			),.datain_h	(datain_h	),	.datain_l	(datain_l	),.dataout	(dataout	)
);//------------<设置初始测试条件>----------------------------------------
initial beginclock = 1'b0;					    //初始条件为0sys_rst_n <= 1'b0;				oe <= 1'b0;	datain_h <= 8'd0;datain_l <= 8'd0;#10								  sys_rst_n <= 1'b1;#10oe <= 1'b1;	#100oe <= 1'b0;		#20$stop;	
endalways #10 clock = ~clock;		    //系统时钟,周期20nsalways #20 datain_h = $random  % 256;   //每20ns生成一个0~255的随机数 
always #20 datain_l = $random  % 256;   //每20ns生成一个0~255的随机数 endmodule

在这里插入图片描述

这篇关于双倍数据速率I/O (ALTDDIO_IN、ALTDDIO_OUT)使用方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/721444

相关文章

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window