复旦大学Python程序设计大作业(略有修改)

2024-02-18 10:28

本文主要是介绍复旦大学Python程序设计大作业(略有修改),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

要求:分析某水果连锁店的csv格式进货和销售数据(UTF-8 编码),用户输入数据所在文件夹(例如 D:\data),在该数据文件夹下面 有in、out两个文件夹。连锁店有很多家,每个连锁店有三位数的编号。每家连锁店有以编号为名的2个文件分别存放在上述两个文件夹里,例如:123号连锁店在in文件夹里有123in.csv,在out文件夹里有123out.csv。
文件样例:

123in.csv内容如下:
订单号,日期,商品名称,进货价格,进货数量
1001,2023-09-01,苹果,2.2,10
1002,2023-09-05,苹果,2.7,8
1003,2023-09-06,香蕉,2.9,10
1004,2023-10-01,香蕉,2.8,5
1005,2023-11-03,苹果,2.5,6
1007,2024-01-03,苹果,2.5,4
1008,2024-01-03,苹果,2.5,8

321in.csv内容如下:
订单号,日期,商品名称,进货价格,进货数量
1001,2023-09-04,苹果,2.2,15
1002,2023-10-04,橙子,2.6,25
1003,2023-11-04,苹果,2.7,10
1004,2023-12-04,苹果,2.5,5
1005,2024-01-02,橙子,2.7,6
1006,2024-01-05,香蕉,2.7,15

123out.csv 内容如下:
订单号,日期,商品名称,销售价格,销售数量
1001,2023-09-14,苹果,3.5,18
1002,2023-09-15,香蕉,4.2,5
1003,2023-10-14,苹果,3.5,5
1004,2023-11-05,香蕉,4,3
1005,2023-12-14,橙子,3.6,3
1006,2024-01-05,苹果,3.5,10

321out.csv 内容如下:
订单号,日期,商品名称,销售价格,销售数量
1001,2023-09-13,苹果,3.3,4
1002,2023-10-15,橙子,4,20
1003,2023-11-13,苹果,3.5,10
1005,2023-12-18,苹果,4,1
1006,2024-01-15,橙子,4,5
1007,2024-01-15,香蕉,4,15
请分析每家连锁店的上述两个文件,进货成本=进货价格*进货数 量,销售额=销售价格*销售数量,利润=销售额-进货成本。计算得出:
1.按时间顺序输出每月(格式xxxx年xx月)利润最大的连锁店编号。
2.根据所有连锁店的总销售额,按时间顺序输出每月(格式xxxx年xx月)销售最好的商品名称。


样例数据文件对应的输出示例为:
2023年09月:123连锁店利润最大,商品苹果销售最好
2023年10月:321连锁店利润最大,商品橙子销售最好
2023年11月:321连锁店利润最大,商品苹果销售最好
2023年12月:123连锁店利润最大,商品橙子销售最好
2024年01月:321连锁店利润最大,商品香蕉销售最好

完整代码如下:

import os
storename=os.listdir(".//out/")  #商店名称列表
best=dict()#销售最好的商品
profit=dict()#利润最好的商店
for x in range(0,len(storename)): #打开所有文件store_id=str(storename[x])[0:3] #店序号with open(".//out/"+str(store_id)+"out.csv", 'r',encoding="UTF-8") as file: #依次循环打开店序号对应的销售文件raw_data=file.readlines()#读取销售文件remove = ['\n']  #去掉空值shopping= [x for x in raw_data if x not in remove]file_in=open(".//in/"+str(store_id)+"in.csv", 'r',encoding="UTF-8") #打开店序号对应的进货文件shopping_in=file_in.readlines() for line in shopping[1:]:sell_date=line.split(",")[1][0:7] #销售日期(到月)sell_name=line.split(",")[2] #销售名称sell_price=line.split(",")[3] #销售价格sell_count=line.split(",")[4] #销售数量if sell_date in best: #按月统计销售最好的商品if sell_name in best[sell_date]: #若有重复商品,累加best[sell_date].update({sell_name:best[sell_date][sell_name]+float(sell_price)*float(sell_count)})else: #若没有,新加best[sell_date].update({sell_name:float(sell_price)*float(sell_count)})else:#没有月商品销售数据,新建best[sell_date]={sell_name:float(sell_price)*float(sell_count)}   if sell_date in profit: #统计销售最好的商店if store_id in profit[sell_date]: #若有此店,累加profit[sell_date].update({store_id:profit[sell_date][store_id]+float(sell_price)*float(sell_count)})else:#若无此店,新建profit[sell_date].update({store_id:float(sell_price)*float(sell_count)})else:#无日期profit[sell_date]={store_id:float(sell_price)*float(sell_count)}for line_in in shopping_in[1:]:buy_date=line_in.split(",")[1][0:7] #购入日期(到月)buy_name=line_in.split(",")[2] #购入名称buy_price=line_in.split(",")[3] #购入价格buy_count=line_in.split(",")[4] #购入数量if buy_date in profit: #统计利润最好的商店if store_id in profit[buy_date]:#日期内有此店profit[buy_date].update({store_id:round(profit[buy_date][store_id]-float(buy_price)*float(buy_count),2)})else:#日期内无此店for storeid in profit[buy_date].keys():profit[buy_date]={storeid:profit[buy_date][storeid]}|{store_id:round(0-float(buy_price)*float(buy_count),2)}          else:#无日期情形profit[buy_date]={store_id:round(0-float(buy_price)*float(buy_count),2)}file_in.close()file.close()
for i in best.keys():#取极值t_best=-1000  #设销售初值t_profit=-1000 #设利润初值for v_best in best[i].values():  #依次比较销售最好t_best=v_best if (t_best<v_best) else t_bestfor v_profit in profit[i].values(): #依次比较利润最好t_profit=v_profit if (t_profit<v_profit) else t_profitkeys=list(best[i].keys())[list(best[i].values()).index(t_best)]fits=list(profit[i].keys())[list(profit[i].values()).index(t_profit)]print(i[0:4]+'年'+i[5:]+"月:"+fits+"连锁店利润最大,商品"+keys+"销售最好") 

这篇关于复旦大学Python程序设计大作业(略有修改)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/720857

相关文章

python中列表list切分的实现

《python中列表list切分的实现》列表是Python中最常用的数据结构之一,经常需要对列表进行切分操作,本文主要介绍了python中列表list切分的实现,文中通过示例代码介绍的非常详细,对大家... 目录一、列表切片的基本用法1.1 基本切片操作1.2 切片的负索引1.3 切片的省略二、列表切分的高

基于Python实现一个PDF特殊字体提取工具

《基于Python实现一个PDF特殊字体提取工具》在PDF文档处理场景中,我们常常需要针对特定格式的文本内容进行提取分析,本文介绍的PDF特殊字体提取器是一款基于Python开发的桌面应用程序感兴趣的... 目录一、应用背景与功能概述二、技术架构与核心组件2.1 技术选型2.2 系统架构三、核心功能实现解析

通过Python脚本批量复制并规范命名视频文件

《通过Python脚本批量复制并规范命名视频文件》本文介绍了如何通过Python脚本批量复制并规范命名视频文件,实现自动补齐数字编号、保留原始文件、智能识别有效文件等功能,听过代码示例介绍的非常详细,... 目录一、问题场景:杂乱的视频文件名二、完整解决方案三、关键技术解析1. 智能路径处理2. 精准文件名

基于Python开发PDF转Doc格式小程序

《基于Python开发PDF转Doc格式小程序》这篇文章主要为大家详细介绍了如何基于Python开发PDF转Doc格式小程序,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 用python实现PDF转Doc格式小程序以下是一个使用Python实现PDF转DOC格式的GUI程序,采用T

Python使用PIL库将PNG图片转换为ICO图标的示例代码

《Python使用PIL库将PNG图片转换为ICO图标的示例代码》在软件开发和网站设计中,ICO图标是一种常用的图像格式,特别适用于应用程序图标、网页收藏夹图标等场景,本文将介绍如何使用Python的... 目录引言准备工作代码解析实践操作结果展示结语引言在软件开发和网站设计中,ICO图标是一种常用的图像

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Python中如何控制小数点精度与对齐方式

《Python中如何控制小数点精度与对齐方式》在Python编程中,数据输出格式化是一个常见的需求,尤其是在涉及到小数点精度和对齐方式时,下面小编就来为大家介绍一下如何在Python中实现这些功能吧... 目录一、控制小数点精度1. 使用 round() 函数2. 使用字符串格式化二、控制对齐方式1. 使用

Python如何快速下载依赖

《Python如何快速下载依赖》本文介绍了四种在Python中快速下载依赖的方法,包括使用国内镜像源、开启pip并发下载功能、使用pipreqs批量下载项目依赖以及使用conda管理依赖,通过这些方法... 目录python快速下载依赖1. 使用国内镜像源临时使用镜像源永久配置镜像源2. 使用 pip 的并

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常