复旦大学Python程序设计大作业(略有修改)

2024-02-18 10:28

本文主要是介绍复旦大学Python程序设计大作业(略有修改),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

要求:分析某水果连锁店的csv格式进货和销售数据(UTF-8 编码),用户输入数据所在文件夹(例如 D:\data),在该数据文件夹下面 有in、out两个文件夹。连锁店有很多家,每个连锁店有三位数的编号。每家连锁店有以编号为名的2个文件分别存放在上述两个文件夹里,例如:123号连锁店在in文件夹里有123in.csv,在out文件夹里有123out.csv。
文件样例:

123in.csv内容如下:
订单号,日期,商品名称,进货价格,进货数量
1001,2023-09-01,苹果,2.2,10
1002,2023-09-05,苹果,2.7,8
1003,2023-09-06,香蕉,2.9,10
1004,2023-10-01,香蕉,2.8,5
1005,2023-11-03,苹果,2.5,6
1007,2024-01-03,苹果,2.5,4
1008,2024-01-03,苹果,2.5,8

321in.csv内容如下:
订单号,日期,商品名称,进货价格,进货数量
1001,2023-09-04,苹果,2.2,15
1002,2023-10-04,橙子,2.6,25
1003,2023-11-04,苹果,2.7,10
1004,2023-12-04,苹果,2.5,5
1005,2024-01-02,橙子,2.7,6
1006,2024-01-05,香蕉,2.7,15

123out.csv 内容如下:
订单号,日期,商品名称,销售价格,销售数量
1001,2023-09-14,苹果,3.5,18
1002,2023-09-15,香蕉,4.2,5
1003,2023-10-14,苹果,3.5,5
1004,2023-11-05,香蕉,4,3
1005,2023-12-14,橙子,3.6,3
1006,2024-01-05,苹果,3.5,10

321out.csv 内容如下:
订单号,日期,商品名称,销售价格,销售数量
1001,2023-09-13,苹果,3.3,4
1002,2023-10-15,橙子,4,20
1003,2023-11-13,苹果,3.5,10
1005,2023-12-18,苹果,4,1
1006,2024-01-15,橙子,4,5
1007,2024-01-15,香蕉,4,15
请分析每家连锁店的上述两个文件,进货成本=进货价格*进货数 量,销售额=销售价格*销售数量,利润=销售额-进货成本。计算得出:
1.按时间顺序输出每月(格式xxxx年xx月)利润最大的连锁店编号。
2.根据所有连锁店的总销售额,按时间顺序输出每月(格式xxxx年xx月)销售最好的商品名称。


样例数据文件对应的输出示例为:
2023年09月:123连锁店利润最大,商品苹果销售最好
2023年10月:321连锁店利润最大,商品橙子销售最好
2023年11月:321连锁店利润最大,商品苹果销售最好
2023年12月:123连锁店利润最大,商品橙子销售最好
2024年01月:321连锁店利润最大,商品香蕉销售最好

完整代码如下:

import os
storename=os.listdir(".//out/")  #商店名称列表
best=dict()#销售最好的商品
profit=dict()#利润最好的商店
for x in range(0,len(storename)): #打开所有文件store_id=str(storename[x])[0:3] #店序号with open(".//out/"+str(store_id)+"out.csv", 'r',encoding="UTF-8") as file: #依次循环打开店序号对应的销售文件raw_data=file.readlines()#读取销售文件remove = ['\n']  #去掉空值shopping= [x for x in raw_data if x not in remove]file_in=open(".//in/"+str(store_id)+"in.csv", 'r',encoding="UTF-8") #打开店序号对应的进货文件shopping_in=file_in.readlines() for line in shopping[1:]:sell_date=line.split(",")[1][0:7] #销售日期(到月)sell_name=line.split(",")[2] #销售名称sell_price=line.split(",")[3] #销售价格sell_count=line.split(",")[4] #销售数量if sell_date in best: #按月统计销售最好的商品if sell_name in best[sell_date]: #若有重复商品,累加best[sell_date].update({sell_name:best[sell_date][sell_name]+float(sell_price)*float(sell_count)})else: #若没有,新加best[sell_date].update({sell_name:float(sell_price)*float(sell_count)})else:#没有月商品销售数据,新建best[sell_date]={sell_name:float(sell_price)*float(sell_count)}   if sell_date in profit: #统计销售最好的商店if store_id in profit[sell_date]: #若有此店,累加profit[sell_date].update({store_id:profit[sell_date][store_id]+float(sell_price)*float(sell_count)})else:#若无此店,新建profit[sell_date].update({store_id:float(sell_price)*float(sell_count)})else:#无日期profit[sell_date]={store_id:float(sell_price)*float(sell_count)}for line_in in shopping_in[1:]:buy_date=line_in.split(",")[1][0:7] #购入日期(到月)buy_name=line_in.split(",")[2] #购入名称buy_price=line_in.split(",")[3] #购入价格buy_count=line_in.split(",")[4] #购入数量if buy_date in profit: #统计利润最好的商店if store_id in profit[buy_date]:#日期内有此店profit[buy_date].update({store_id:round(profit[buy_date][store_id]-float(buy_price)*float(buy_count),2)})else:#日期内无此店for storeid in profit[buy_date].keys():profit[buy_date]={storeid:profit[buy_date][storeid]}|{store_id:round(0-float(buy_price)*float(buy_count),2)}          else:#无日期情形profit[buy_date]={store_id:round(0-float(buy_price)*float(buy_count),2)}file_in.close()file.close()
for i in best.keys():#取极值t_best=-1000  #设销售初值t_profit=-1000 #设利润初值for v_best in best[i].values():  #依次比较销售最好t_best=v_best if (t_best<v_best) else t_bestfor v_profit in profit[i].values(): #依次比较利润最好t_profit=v_profit if (t_profit<v_profit) else t_profitkeys=list(best[i].keys())[list(best[i].values()).index(t_best)]fits=list(profit[i].keys())[list(profit[i].values()).index(t_profit)]print(i[0:4]+'年'+i[5:]+"月:"+fits+"连锁店利润最大,商品"+keys+"销售最好") 

这篇关于复旦大学Python程序设计大作业(略有修改)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/720857

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

作业提交过程之HDFSMapReduce

作业提交全过程详解 (1)作业提交 第1步:Client调用job.waitForCompletion方法,向整个集群提交MapReduce作业。 第2步:Client向RM申请一个作业id。 第3步:RM给Client返回该job资源的提交路径和作业id。 第4步:Client提交jar包、切片信息和配置文件到指定的资源提交路径。 第5步:Client提交完资源后,向RM申请运行MrAp

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

两个月冲刺软考——访问位与修改位的题型(淘汰哪一页);内聚的类型;关于码制的知识点;地址映射的相关内容

1.访问位与修改位的题型(淘汰哪一页) 访问位:为1时表示在内存期间被访问过,为0时表示未被访问;修改位:为1时表示该页面自从被装入内存后被修改过,为0时表示未修改过。 置换页面时,最先置换访问位和修改位为00的,其次是01(没被访问但被修改过)的,之后是10(被访问了但没被修改过),最后是11。 2.内聚的类型 功能内聚:完成一个单一功能,各个部分协同工作,缺一不可。 顺序内聚:

如何在运行时修改serialVersionUID

优质博文:IT-BLOG-CN 问题 我正在使用第三方库连接到外部系统,一切运行正常,但突然出现序列化错误 java.io.InvalidClassException: com.essbase.api.base.EssException; local class incompatible: stream classdesc serialVersionUID = 90314637791991