随机过程初级教程 第一章

2024-02-17 21:44

本文主要是介绍随机过程初级教程 第一章,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随机过程初级教程 第一章

  • 概率公式
    • 全概率公式
    • 随机变量的无限族
    • 特征函数
    • 母函数和拉普拉斯变换
    • 一些常见的分布
    • 极限定理
    • 不等式
  • 随机过程的例子
    • 布朗运动
    • 泊松过程
  • 随机过程类型
    • 平稳独立增量过程
    • 马尔科夫过程
    • 平稳过程
    • 更新过程
    • 点过程

概率公式

在这里插入图片描述
在这里插入图片描述

全概率公式

P r ( X ≤ x ) = P r ( X ≤ x , Y ≤ ∞ ) = ∫ − ∞ + ∞ F X ∣ Y ( x ∣ y ) d F Y ( y ) Pr(X\leq x)=Pr(X\leq x, Y\leq \infty)=\int_{-\infty}^{+\infty}{F_{X|Y}(x|y)dF_Y(y)} Pr(Xx)=Pr(Xx,Y)=+FXY(xy)dFY(y)
Y Y Y有概率密度函数 p Y ( y ) p_Y(y) pY(y)时,公式转变为:
P r ( X ≤ x ) = P r ( X ≤ x , Y ≤ ∞ ) = ∫ − ∞ + ∞ P r ( X ≤ x ∣ Y = y ) p Y ( y ) d y Pr(X\leq x)=Pr(X\leq x, Y\leq \infty)=\int_{-\infty}^{+\infty}{Pr(X\leq x|Y=y)p_Y(y)dy} Pr(Xx)=Pr(Xx,Y)=+Pr(XxY=y)pY(y)dy
x , y x,y x,y有联合密度时,我们可以定义 Y = y Y=y Y=y时,X的条件密度函数为 p X ∣ Y ( x ∣ y ) = d d x F X ∣ Y ( x ∣ y ) = p X Y ( x y ) p Y ( y ) p_{X|Y}(x|y)=\frac{d}{dx}F_{X|Y}(x|y)=\frac{p_{XY}(xy)}{p_Y(y)} pXY(xy)=dxdFXY(xy)=pY(y)pXY(xy)在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

随机变量的无限族

在这里插入图片描述

特征函数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

母函数和拉普拉斯变换

在这里插入图片描述在这里插入图片描述

一些常见的分布

在这里插入图片描述

在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述

在这里插入图片描述

极限定理

在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

不等式

在这里插入图片描述在这里插入图片描述

随机过程的例子

在这里插入图片描述

布朗运动

在这里插入图片描述在这里插入图片描述

泊松过程

在这里插入图片描述

随机过程类型

平稳独立增量过程

独立增量: X t − X t − 1 , ∀ t ∈ T X_t-X_{t-1}, \forall t\in T XtXt1,tT互相独立。
平稳增量: X t − X s , t > s X_t-X_s, t>s XtXs,t>s只与 t − s t-s ts有关,与 s s s无关。

∀ t 1 , t 2 , . . . , t n , a n d ∀ a 1 , a 2 , . . . , a n ∈ R E [ X t n + 1 ∣ X 1 = a 1 , X 2 = a 2 , . . . , X t n = a n ] = a n \forall t_1,t_2,...,t_n, and \forall a_1,a_2,...,a_n\in R\\ E[X_{t_n+1}|X_1=a_1,X_2=a_2,...,X_{t_n}=a_n]=a_n t1,t2,...,tn,anda1,a2,...,anRE[Xtn+1X1=a1,X2=a2,...,Xtn=an]=an

马尔科夫过程

∀ t 1 , t 2 , . . . , t n < t P r ( a < X t < b ∣ X 1 = x 1 , X 2 = x 2 , . . . , X t n = x n ) = P r ( a < X t < b ∣ X t n = x n ) \forall t_1,t_2,...,t_n<t\\ Pr(a<X_t<b|X_1=x_1,X_2=x_2,...,X_{t_n}=x_n)=Pr(a<X_t<b|X_{t_n}=x_n) t1,t2,...,tn<tPr(a<Xt<bX1=x1,X2=x2,...,Xtn=xn)=Pr(a<Xt<bXtn=xn)
这蕴含着条件独立性。
转移概率函数: p ( x , s ; t , A ) = P r ( X t ∈ A ∣ X s = x ) p(x,s;t,A)=Pr(X_t\in A|X_s=x) p(x,s;t,A)=Pr(XtAXs=x)
马尔科夫链:状态空间是有限或可数的马尔可夫过程。
扩散过程:状态空间是连续的马尔可夫过程。

平稳过程

严格平稳:对任意 h > 0 h>0 h>0和任意 t 1 , t 2 , . . . , t n ∈ T t_1,t_2,...,t_n\in T t1,t2,...,tnT,随机变量组 ( X t 1 + h , X t 2 + h , . . . , X t n + h ) (X_{t_1+h},X_{t_2+h},...,X_{t_n+h}) (Xt1+h,Xt2+h,...,Xtn+h) ( X t 1 , X t 2 , . . . , X t n ) (X_{t_1},X_{t_2},...,X_{t_n}) (Xt1,Xt2,...,Xtn)的联合分布函数相同。

特别的对任意时刻t, X t X_t Xt的分布都相同。

称马尔可夫过程有平稳转移概率,如果 p ( x , s ; t , A ) p(x,s;t,A) p(x,s;t,A) t − s t-s ts的函数。

泊松过程和布朗运动都不是平稳的,但增量 Z t = X t + h − X t Zt = X_{t+h} − X_t Zt=Xt+hXt对任意固定h是平稳随机过程

不存在非常数的平稳独立增量过程是平稳过程。

更新过程

在这里插入图片描述

点过程

在这里插入图片描述

这篇关于随机过程初级教程 第一章的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/719076

相关文章

SpringBoot 整合 Grizzly的过程

《SpringBoot整合Grizzly的过程》Grizzly是一个高性能的、异步的、非阻塞的HTTP服务器框架,它可以与SpringBoot一起提供比传统的Tomcat或Jet... 目录为什么选择 Grizzly?Spring Boot + Grizzly 整合的优势添加依赖自定义 Grizzly 作为

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

springboot整合gateway的详细过程

《springboot整合gateway的详细过程》本文介绍了如何配置和使用SpringCloudGateway构建一个API网关,通过实例代码介绍了springboot整合gateway的过程,需要... 目录1. 添加依赖2. 配置网关路由3. 启用Eureka客户端(可选)4. 创建主应用类5. 自定

最新版IDEA配置 Tomcat的详细过程

《最新版IDEA配置Tomcat的详细过程》本文介绍如何在IDEA中配置Tomcat服务器,并创建Web项目,首先检查Tomcat是否安装完成,然后在IDEA中创建Web项目并添加Web结构,接着,... 目录配置tomcat第一步,先给项目添加Web结构查看端口号配置tomcat    先检查自己的to

使用C#如何创建人名或其他物体随机分组

《使用C#如何创建人名或其他物体随机分组》文章描述了一个随机分配人员到多个团队的代码示例,包括将人员列表随机化并根据组数分配到不同组,最后按组号排序显示结果... 目录C#创建人名或其他物体随机分组此示例使用以下代码将人员分配到组代码首先将lstPeople ListBox总结C#创建人名或其他物体随机分组

SpringBoot集成SOL链的详细过程

《SpringBoot集成SOL链的详细过程》Solanaj是一个用于与Solana区块链交互的Java库,它为Java开发者提供了一套功能丰富的API,使得在Java环境中可以轻松构建与Solana... 目录一、什么是solanaj?二、Pom依赖三、主要类3.1 RpcClient3.2 Public

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

SpringBoot整合kaptcha验证码过程(复制粘贴即可用)

《SpringBoot整合kaptcha验证码过程(复制粘贴即可用)》本文介绍了如何在SpringBoot项目中整合Kaptcha验证码实现,通过配置和编写相应的Controller、工具类以及前端页... 目录SpringBoot整合kaptcha验证码程序目录参考有两种方式在springboot中使用k

SpringBoot整合InfluxDB的详细过程

《SpringBoot整合InfluxDB的详细过程》InfluxDB是一个开源的时间序列数据库,由Go语言编写,适用于存储和查询按时间顺序产生的数据,它具有高效的数据存储和查询机制,支持高并发写入和... 目录一、简单介绍InfluxDB是什么?1、主要特点2、应用场景二、使用步骤1、集成原生的Influ