数学实验第三版(主编:李继成 赵小艳)课后练习答案(十二)(3)

本文主要是介绍数学实验第三版(主编:李继成 赵小艳)课后练习答案(十二)(3),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实验十二:微分方程模型

练习三

1.分别用数值解命令ode23t和ode45 计算示例3中微分方程的数值解,同用命令ode23 算得的数值解以及解析解比较,哪种方法精度较高?你用什么方法比较它们之间的精度?

clc;clear;
f=@(x,y)2*y+x+2;
figure(1)
[x,y]=ode23t(f,[1,2],1);
plot(x,y,'r');
[x,yy]=ode45(f,[1,2],1);
hold on
plot(x,yy,'b');
legend('ode23t','ode45');
[x,yyy]=ode23(f,[1,2],1);
figure(2)
plot(x,yyy);
syms y(x)
h=diff(y)==2*y+x+2;
hh=dsolve(h,y(0)==1);
hold on
ezplot(hh,[0,1]);
legend('数值解ode23','解析解');

由上图我们可以发现,ode23所得到的数值解和解析解相差还是比较大的,而ode23t和ode45得到的数值解相差较小。

2.分别用命令ode23,ode23t和ode45求贝塞尔方程的数值解,并作出数值解曲线.

我们首先要将此微分方程改写为一阶方程(因为ode类函数只能解一阶可分离函数):

y'=z ,则原方程化为:

初值条件为:

clc;clear;
f=@(x,m)[m(2);-m(2)/x-(1-(0.025/x^2)*m(1))];
[x,y]=ode23(f,[pi/2,2*pi],[2,2/pi]);
[xx,yy]=ode23t(f,[pi/2,2*pi],[2,2/pi]);
[xxx,yyy]=ode45(f,[pi/2,2*pi],[2,2/pi]);
figure(1)
plot(x,y);
figure(2)
plot(xx,yy);
figure(3)
plot(xxx,yyy);

x =

    1.5708

    1.6076

    1.7914

    2.0028

    2.2100

    2.3759

    2.6091

    2.9289

    3.3577

    3.8289

    4.3001

    4.7714

    5.2426

    5.7139

    6.1851

    6.2832

y =

    2.0000    0.6366

    2.0225    0.5864

    2.1086    0.3549

    2.1583    0.1202

    2.1615   -0.0861

    2.1345   -0.2387

    2.0552   -0.4382

    1.8743   -0.6907

    1.5104   -1.0022

    0.9625   -1.3201

    0.2691   -1.6204

   -0.5627   -1.9084

   -1.5280   -2.1874

   -2.6232   -2.4596

   -3.8453   -2.7265

   -4.1155   -2.7815

xx =

    1.5708

    1.5944

    1.6415

    1.6887

    1.7479

    1.8522

    1.9564

    2.0607

    2.1280

    2.1953

    2.2626

    2.3602

    2.4785

    2.6247

    2.7709

    2.9705

    3.1701

    3.4413

    3.7126

    4.0812

    4.4497

    4.8183

    5.1869

    5.6581

    6.1294

    6.2832

yy =

    2.0000    0.6366

    2.0143    0.6046

    2.0413    0.5416

    2.0654    0.4809

    2.0917    0.4073

    2.1278    0.2846

    2.1514    0.1694

    2.1634    0.0605

    2.1652   -0.0069

    2.1625   -0.0722

    2.1556   -0.1356

    2.1380   -0.2247

    2.1052   -0.3284

    2.0483   -0.4512

    1.9737   -0.5688

    1.8448   -0.7225

    1.6859   -0.8695

    1.4242   -1.0608

    1.1116   -1.2441

    0.6089   -1.4833

    0.0198   -1.7138

   -0.6531   -1.9374

   -1.4074   -2.1556

   -2.4875   -2.4285

   -3.6949   -2.6960

   -4.1163   -2.7823

xxx =

    1.5708

    1.5939

    1.6170

    1.6401

    1.6632

    1.7786

    1.8941

    2.0095

    2.1250

    2.2428

    2.3606

    2.4784

    2.5962

    2.7140

    2.8319

    2.9497

    3.0675

    3.1853

    3.3031

    3.4209

    3.5387

    3.6565

    3.7743

    3.8921

    4.0100

    4.1278

    4.2456

    4.3634

    4.4812

    4.5990

    4.7168

    4.8346

    4.9524

    5.0702

    5.1880

    5.3059

    5.4237

    5.5415

    5.6593

    5.7771

    5.8949

    5.9920

    6.0890

    6.1861

    6.2832

yyy =

    2.0000    0.6366

    2.0143    0.6049

    2.0279    0.5738

    2.0408    0.5432

    2.0530    0.5132

    2.1039    0.3701

    2.1389    0.2374

    2.1591    0.1132

    2.1653   -0.0038

    2.1581   -0.1171

    2.1379   -0.2249

    2.1053   -0.3282

    2.0608   -0.4275

    2.0047   -0.5234

    1.9376   -0.6162

    1.8596   -0.7064

    1.7712   -0.7942

    1.6726   -0.8800

    1.5640   -0.9639

    1.4455   -1.0461

    1.3175   -1.1268

    1.1801   -1.2061

    1.0334   -1.2842

    0.8776   -1.3612

    0.7127   -1.4371

    0.5390   -1.5121

    0.3565   -1.5862

    0.1653   -1.6596

   -0.0345   -1.7322

   -0.2428   -1.8042

   -0.4596   -1.8755

   -0.6847   -1.9462

   -0.9181   -2.0164

   -1.1598   -2.0861

   -1.4097   -2.1554

   -1.6676   -2.2242

   -1.9337   -2.2926

   -2.2078   -2.3606

   -2.4899   -2.4283

   -2.7799   -2.4956

   -3.0779   -2.5626

   -3.3293   -2.6176

   -3.5861   -2.6724

   -3.8481   -2.7270

   -4.1155   -2.7814

此题要学会微分方程组该如何去解决。

3.17世纪末至18世纪初,牛顿发现在较小的温度范围内,物体冷却速率正比于该物体与环境温度的差值,因而得冷却模型

式中T(t)为物体t时刻的温度,C是环境温度,为正的常数,T0为物体在=0时刻的温度,其解为

根据该冷却模型,完成下面的实验任务:

(1)某天晚上23:00时,在一住宅内发现一受害者的尸体,法医于23:35 赶到现场,立即测量死者体温是30.8℃,一小时后再次测量体温为29.1℃,法医还注意到当时室温是28℃,试估计受害者的死亡时间.

clc;clear;
format long
syms k m
f=@(t)9*exp(-k*t)+28;
f(m+35),f(m+95)
% 9*exp(-k*(m + 35)) + 28
% 9*exp(-k*(m + 95)) + 28
fsolve('fun',[1,5])
function f=fun(x)
f(1)=9*exp(-x(1)*(x(2) + 35)) + 28;
f(2)=9*exp(-x(1)*(x(2) + 95)) + 28;
end

ans =

     4     3

由此可知,尸体的死亡时间为11:57.

(2)一个煮熟的鸡蛋在温度为98 ℃时放人温度为18℃的水中,5 min后鸡蛋的温度是 38℃,假设水的温度几乎没有升高,需要多长时间鸡蛋的温度可以达到20℃?

clc;clear;
format long
syms k m t
f=@(t)(98-18)*exp(-k*t)+18;
k=double(solve(f(5)==38));
k0=0.277258872223978;
f=@(t)(98-18)*exp(-k0*t)+18;
double(solve(f(t)==20))

ans =13.304820237218411;

4.承接此次实验中练习1的第2题,如图12.7所示.图中,两个容器完全相同,容器1排水孔的半径为0.02m,容器2排水孔的半径为0.01m,假如容器1装满水,容器2内水面的高度是1m,同时开启排水孔,完成下面的实验任务:

(1)经多长时间两个容器水面高度相同?

(2)求出容器2水面的高度与时间的函数关系,并求经多长时间容器2可以排空?

(3)在同一坐标系上画出两个容器内水面高度与时间的函数曲线进行比较.

(4)自己设定排水孔的半径与各容器的初始水位,将该容器排供水问题推广到n个容器的一般情况,建立一个简单的数学模型并求相关解.

我们假设水桶底面半径为1m,桶高4m;

clc;clear; 
format short
m=4;r=1;
syms h(t) k
m1=-r^2*pi*diff(h)==k*sqrt(h)*pi*0.02^2;
h1=dsolve(m1,h(0)==m);
k=4.43;
h1=eval(h1(2))
%h1=((443*t)/500000 - 2)^2;
m2=-r^2*diff(h)==0.02^2*k*(2-(443*t)/500000)-0.01^2*k*sqrt(h);
h2=dsolve(m2)
f=@(t)(t - 1000000/443)^2/((500*67823512885646425253349271511524613553^(1/2))/3620155077721425633 + 62500/443)^2;

此题未写完,感觉不是很清楚,还请高人指点。

推荐下一篇文章:

数学实验第三版(主编:李继成 赵小艳)课后练习答案(十二)(4)icon-default.png?t=N7T8https://blog.csdn.net/2301_80199493/article/details/136136025?spm=1001.2014.3001.5501本文由作者自创,由于时间原因,难免出现些许错误,还请大家多多指正。创作不易,请大家多多支持。

这篇关于数学实验第三版(主编:李继成 赵小艳)课后练习答案(十二)(3)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/718141

相关文章

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

poj 3104 二分答案

题意: n件湿度为num的衣服,每秒钟自己可以蒸发掉1个湿度。 然而如果使用了暖炉,每秒可以烧掉k个湿度,但不计算蒸发了。 现在问这么多的衣服,怎么烧事件最短。 解析: 二分答案咯。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <c

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

STM32(十一):ADC数模转换器实验

AD单通道: 1.RCC开启GPIO和ADC时钟。配置ADCCLK分频器。 2.配置GPIO,把GPIO配置成模拟输入的模式。 3.配置多路开关,把左面通道接入到右面规则组列表里。 4.配置ADC转换器, 包括AD转换器和AD数据寄存器。单次转换,连续转换;扫描、非扫描;有几个通道,触发源是什么,数据对齐是左对齐还是右对齐。 5.ADC_CMD 开启ADC。 void RCC_AD

java线程深度解析(一)——java new 接口?匿名内部类给你答案

http://blog.csdn.net/daybreak1209/article/details/51305477 一、内部类 1、内部类初识 一般,一个类里主要包含类的方法和属性,但在Java中还提出在类中继续定义类(内部类)的概念。 内部类的定义:类的内部定义类 先来看一个实例 [html]  view plain copy pu

HNU-2023电路与电子学-实验3

写在前面: 一、实验目的 1.了解简易模型机的内部结构和工作原理。 2.分析模型机的功能,设计 8 重 3-1 多路复用器。 3.分析模型机的功能,设计 8 重 2-1 多路复用器。 4.分析模型机的工作原理,设计模型机控制信号产生逻辑。 二、实验内容 1.用 VERILOG 语言设计模型机的 8 重 3-1 多路复用器; 2.用 VERILOG 语言设计模型机的 8 重 2-1 多

【附答案】C/C++ 最常见50道面试题

文章目录 面试题 1:深入探讨变量的声明与定义的区别面试题 2:编写比较“零值”的`if`语句面试题 3:深入理解`sizeof`与`strlen`的差异面试题 4:解析C与C++中`static`关键字的不同用途面试题 5:比较C语言的`malloc`与C++的`new`面试题 6:实现一个“标准”的`MIN`宏面试题 7:指针是否可以是`volatile`面试题 8:探讨`a`和`&a`