LK ARM64 start.S处理

2024-02-17 14:08
文章标签 处理 arm64 start lk

本文主要是介绍LK ARM64 start.S处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

arch/arm64/start.S

 

#include <asm.h> #include <arch/arm64/mmu.h> #include <arch/asm_macros.h> #include <kernel/vm.h>

/** Register use:  *  x0-x3   Arguments*  x9-x15  Scratch*  x19-x28 Globals*/

定义一些别名 tmp                     .req x9 tmp2                    .req x10 wtmp2                   .req w10 index                   .req x11 index_shift             .req x12 page_table              .req x13 new_page_table          .req x14 phys_offset             .req x15

cpuid                   .req x19 page_table0             .req x20 page_table1             .req x21 mmu_initial_mapping     .req x22 vaddr                   .req x23 paddr                   .req x24 mapping_size            .req x25 size                    .req x26 attr                    .req x27

.section .text.boot FUNCTION(_start) .globl arm_reset arm_reset:bl      arm64_elX_to_el1

#if WITH_KERNEL_VM/* enable caches so atomics and spinlocks work */mrs     tmp, sctlr_el1orr     tmp, tmp, #(1<<12) /* Enable icache */orr     tmp, tmp, #(1<<2)  /* Enable dcache/ucache */orr     tmp, tmp, #(1<<3)  /* Enable Stack Alignment Check EL1 */orr     tmp, tmp, #(1<<4)  /* Enable Stack Alignment Check EL0 */bic     tmp, tmp, #(1<<1)  /* Disable Alignment Checking for EL1 EL0 */msr     sctlr_el1, tmp

    /* set up the mmu according to mmu_initial_mappings */

    /* load the base of the translation table and clear the table */adrp    page_table1, arm64_kernel_translation_tableadd     page_table1, page_table1, #:lo12:arm64_kernel_translation_table

    /* Prepare tt_trampoline page table *//* Calculate pagetable physical addresses */adrp    page_table0, tt_trampolineadd     page_table0, page_table0, #:lo12:tt_trampoline

#if WITH_SMPmrs     cpuid, mpidr_el1ubfx    cpuid, cpuid, #0, #SMP_CPU_ID_BITScbnz    cpuid, .Lmmu_enable_secondary #endif

    mov     tmp, #0

    /* walk through all the entries in the translation table, setting them up */ .Lclear_top_page_table_loop:str     xzr, [page_table1, tmp, lsl #3]add     tmp, tmp, #1cmp     tmp, #MMU_KERNEL_PAGE_TABLE_ENTRIES_TOPbne     .Lclear_top_page_table_loop

    /* load the address of the mmu_initial_mappings table and start processing */adrp    mmu_initial_mapping, mmu_initial_mappingsadd     mmu_initial_mapping, mmu_initial_mapping, #:lo12:mmu_initial_mappings

.Linitial_mapping_loop: /* Read entry of mmu_initial_mappings (likely defined in platform.c) */ldp     paddr, vaddr, [mmu_initial_mapping, #__MMU_INITIAL_MAPPING_PHYS_OFFSET]ldp     size, tmp, [mmu_initial_mapping, #__MMU_INITIAL_MAPPING_SIZE_OFFSET]

    tbzmask tmp, MMU_INITIAL_MAPPING_FLAG_DYNAMIC, .Lnot_dynamicadr     paddr, _startmov     size, x0str     paddr, [mmu_initial_mapping, #__MMU_INITIAL_MAPPING_PHYS_OFFSET]str     size, [mmu_initial_mapping, #__MMU_INITIAL_MAPPING_SIZE_OFFSET]

.Lnot_dynamic:/* if size == 0, end of list, done with initial mapping */cbz     size, .Linitial_mapping_donemov     mapping_size, size

    /* set up the flags */tbzmask tmp, MMU_INITIAL_MAPPING_FLAG_UNCACHED, .Lnot_uncachedldr     attr, =MMU_INITIAL_MAP_STRONGLY_ORDEREDb       .Lmem_type_done

.Lnot_uncached:/* is this memory mapped to device/peripherals? */tbzmask tmp, MMU_INITIAL_MAPPING_FLAG_DEVICE, .Lnot_deviceldr     attr, =MMU_INITIAL_MAP_DEVICEb       .Lmem_type_done .Lnot_device:

/* Determine the segment in which the memory resides and set appropriate*  attributes.  In order to handle offset kernels, the following rules are*  implemented below:*      KERNEL_BASE    to __code_start             -read/write (see note below)*      __code_start   to __rodata_start (.text)   -read only*      __rodata_start to __data_start   (.rodata) -read only, execute never*      __data_start   to .....          (.data)   -read/write**  The space below __code_start is presently left as read/write (same as .data)*   mainly as a workaround for the raspberry pi boot process.  Boot vectors for*   secondary CPUs are in this area and need to be updated by cpu0 once the system*   is ready to boot the secondary processors.*   TODO: handle this via mmu_initial_mapping entries, which may need to be*         extended with additional flag types*/ .Lmapping_size_loop:ldr     attr, =MMU_PTE_KERNEL_DATA_FLAGSldr     tmp, =__code_startsubs    size, tmp, vaddr/* If page is below  the entry point (_start) mark as kernel data */b.hi    .Lmem_type_done

    ldr     attr, =MMU_PTE_KERNEL_RO_FLAGSldr     tmp, =__rodata_startsubs    size, tmp, vaddrb.hi    .Lmem_type_doneorr     attr, attr, #MMU_PTE_ATTR_PXNldr     tmp, =__data_startsubs    size, tmp, vaddrb.hi    .Lmem_type_doneldr     attr, =MMU_PTE_KERNEL_DATA_FLAGSldr     tmp, =_endsubs    size, tmp, vaddrb.lo    . /* Error: _end < vaddr */cmp     mapping_size, sizeb.lo    . /* Error: mapping_size < size => RAM size too small for data/bss */mov     size, mapping_size

.Lmem_type_done:subs    mapping_size, mapping_size, sizeb.lo    . /* Error: mapping_size < size (RAM size too small for code/rodata?) */

    /* Check that paddr, vaddr and size are page aligned */orr     tmp, vaddr, paddrorr     tmp, tmp, sizetst     tmp, #(1 << MMU_KERNEL_PAGE_SIZE_SHIFT) - 1bne     . /* Error: not page aligned */

    /* Clear top bits of virtual address (should be all set) */eor     vaddr, vaddr, #(~0 << MMU_KERNEL_SIZE_SHIFT)

    /* Check that top bits were all set */tst     vaddr, #(~0 << MMU_KERNEL_SIZE_SHIFT)bne     . /* Error: vaddr out of range */

.Lmap_range_top_loop:/* Select top level page table */mov     page_table, page_table1mov     index_shift, #MMU_KERNEL_TOP_SHIFT

    lsr     index, vaddr, index_shift

/* determine the type of page table entry to use given alignment and size*  of the chunk of memory we are mapping*/ .Lmap_range_one_table_loop:/* Check if current level allow block descriptors */cmp     index_shift, #MMU_PTE_DESCRIPTOR_BLOCK_MAX_SHIFTb.hi    .Lmap_range_need_page_table

    /* Check if paddr and vaddr alignment allows a block descriptor */orr     tmp2, vaddr, paddrlsr     tmp, tmp2, index_shiftlsl     tmp, tmp, index_shiftcmp     tmp, tmp2b.ne    .Lmap_range_need_page_table

    /* Check if size is large enough for a block mapping */lsr     tmp, size, index_shiftcbz     tmp, .Lmap_range_need_page_table

    /* Select descriptor type, page for level 3, block for level 0-2 */orr     tmp, attr, #MMU_PTE_L3_DESCRIPTOR_PAGEcmp     index_shift, MMU_KERNEL_PAGE_SIZE_SHIFTbeq     .Lmap_range_l3orr     tmp, attr, #MMU_PTE_L012_DESCRIPTOR_BLOCK .Lmap_range_l3:

    /* Write page table entry */orr     tmp, tmp, paddrstr     tmp, [page_table, index, lsl #3]

    /* Move to next page table entry */mov     tmp, #1lsl     tmp, tmp, index_shiftadd     vaddr, vaddr, tmpadd     paddr, paddr, tmpsubs    size, size, tmp/* TODO: add local loop if next entry is in the same page table */b.ne    .Lmap_range_top_loop /* size != 0 */

    /* Restore top bits of virtual address (should be all set) */eor     vaddr, vaddr, #(~0 << MMU_KERNEL_SIZE_SHIFT)/* Move to next subtype of ram mmu_initial_mappings entry */cbnz     mapping_size, .Lmapping_size_loop

    /* Move to next mmu_initial_mappings entry */add     mmu_initial_mapping, mmu_initial_mapping, __MMU_INITIAL_MAPPING_SIZEb       .Linitial_mapping_loop

.Lmap_range_need_page_table:/* Check if page table entry is unused */ldr     new_page_table, [page_table, index, lsl #3]cbnz    new_page_table, .Lmap_range_has_page_table

    /* Calculate phys offset (needed for memory allocation) */ .Lphys_offset:adr     phys_offset, .Lphys_offset /* phys */ldr     tmp, =.Lphys_offset /* virt */sub     phys_offset, tmp, phys_offset

    /* Allocate new page table */calloc_bootmem_aligned new_page_table, tmp, tmp2, MMU_KERNEL_PAGE_SIZE_SHIFT, phys_offset

    /* Write page table entry (with allocated page table) */orr     new_page_table, new_page_table, #MMU_PTE_L012_DESCRIPTOR_TABLEstr     new_page_table, [page_table, index, lsl #3]

.Lmap_range_has_page_table:/* Check descriptor type */and     tmp, new_page_table, #MMU_PTE_DESCRIPTOR_MASKcmp     tmp, #MMU_PTE_L012_DESCRIPTOR_TABLEb.ne    . /* Error: entry already in use (as a block entry) */

    /* switch to next page table level */bic     page_table, new_page_table, #MMU_PTE_DESCRIPTOR_MASKmov     tmp, #~0lsl     tmp, tmp, index_shiftbic     tmp, vaddr, tmpsub     index_shift, index_shift, #(MMU_KERNEL_PAGE_SIZE_SHIFT - 3)lsr     index, tmp, index_shift

    b       .Lmap_range_one_table_loop

.Linitial_mapping_done:

    /* Prepare tt_trampoline page table */

    /* Zero tt_trampoline translation tables */mov     tmp, #0 .Lclear_tt_trampoline:str     xzr, [page_table0, tmp, lsl#3]add     tmp, tmp, #1cmp     tmp, #MMU_PAGE_TABLE_ENTRIES_IDENTblt     .Lclear_tt_trampoline

    /* Setup mapping at phys -> phys */adr     tmp, .Lmmu_on_pclsr     tmp, tmp, #MMU_IDENT_TOP_SHIFT    /* tmp = paddr index */ldr     tmp2, =MMU_PTE_IDENT_FLAGSadd     tmp2, tmp2, tmp, lsl #MMU_IDENT_TOP_SHIFT  /* tmp2 = pt entry */

    str     tmp2, [page_table0, tmp, lsl #3]     /* tt_trampoline[paddr index] = pt entry */

#if WITH_SMPadrp    tmp, page_tables_not_readyadd     tmp, tmp, #:lo12:page_tables_not_readystr     wzr, [tmp]b       .Lpage_tables_ready

.Lmmu_enable_secondary:adrp    tmp, page_tables_not_readyadd     tmp, tmp, #:lo12:page_tables_not_ready .Lpage_tables_not_ready:ldr     wtmp2, [tmp]cbnz    wtmp2, .Lpage_tables_not_ready .Lpage_tables_ready: #endif

    /* set up the mmu */

    /* Invalidate TLB */tlbi    vmalle1isisbdsb     sy

    /* Initialize Memory Attribute Indirection Register */ldr     tmp, =MMU_MAIR_VALmsr     mair_el1, tmp

    /* Initialize TCR_EL1 *//* set cacheable attributes on translation walk *//* (SMP extensions) non-shareable, inner write-back write-allocate */ldr     tmp, =MMU_TCR_FLAGS_IDENTmsr     tcr_el1, tmp

    isb

    /* Write ttbr with phys addr of the translation table */msr     ttbr0_el1, page_table0msr     ttbr1_el1, page_table1isb

    /* Read SCTLR */mrs     tmp, sctlr_el1

    /* Turn on the MMU */orr     tmp, tmp, #0x1

    /* Write back SCTLR */msr     sctlr_el1, tmp .Lmmu_on_pc:isb

    /* Jump to virtual code address */ldr     tmp, =.Lmmu_on_vaddrbr      tmp

.Lmmu_on_vaddr:

    /* Disable trampoline page-table in ttbr0 */ldr     tmp, =MMU_TCR_FLAGS_KERNELmsr     tcr_el1, tmpisb

/* Invalidate TLB */tlbi    vmalle1isb

#if WITH_SMPcbnz    cpuid, .Lsecondary_boot #endif #endif /* WITH_KERNEL_VM */

    ldr tmp, =__stack_endmov sp, tmp

    /* clear bss */ .L__do_bss:/* clear out the bss excluding the stack and kernel translation table  *//* NOTE: relies on __post_prebss_bss_start and __bss_end being 8 byte aligned */ldr     tmp, =__post_prebss_bss_startldr     tmp2, =__bss_endsub     tmp2, tmp2, tmpcbz     tmp2, .L__bss_loop_done .L__bss_loop:sub     tmp2, tmp2, #8str     xzr, [tmp], #8cbnz    tmp2, .L__bss_loop .L__bss_loop_done:

    bl  lk_mainb   .

#if WITH_SMP .Lsecondary_boot:and     tmp, cpuid, #0xffcmp     tmp, #(1 << SMP_CPU_CLUSTER_SHIFT)bge     .Lunsupported_cpu_trapbic     cpuid, cpuid, #0xfforr     cpuid, tmp, cpuid, LSR #(8 - SMP_CPU_CLUSTER_SHIFT)

    cmp     cpuid, #SMP_MAX_CPUSbge     .Lunsupported_cpu_trap

    /* Set up the stack */ldr     tmp, =__stack_endmov     tmp2, #ARCH_DEFAULT_STACK_SIZEmul     tmp2, tmp2, cpuidsub     sp, tmp, tmp2

    mov     x0, cpuidbl      arm64_secondary_entry

.Lunsupported_cpu_trap:wfeb       .Lunsupported_cpu_trap #endif

.ltorg

#if WITH_SMP .data DATA(page_tables_not_ready).long       1 #endif

.section .bss.prebss.stack.align 4 DATA(__stack).skip ARCH_DEFAULT_STACK_SIZE * SMP_MAX_CPUS DATA(__stack_end)

#if WITH_KERNEL_VM .section ".bss.prebss.translation_table" .align 3 + MMU_PAGE_TABLE_ENTRIES_IDENT_SHIFT DATA(tt_trampoline).skip 8 * MMU_PAGE_TABLE_ENTRIES_IDENT #endif

 

这篇关于LK ARM64 start.S处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/718011

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python实现自动化接收与处理手机验证码

《Python实现自动化接收与处理手机验证码》在移动互联网时代,短信验证码已成为身份验证、账号注册等环节的重要安全手段,本文将介绍如何利用Python实现验证码的自动接收,识别与转发,需要的可以参考下... 目录引言一、准备工作1.1 硬件与软件需求1.2 环境配置二、核心功能实现2.1 短信监听与获取2.

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

Java使用多线程处理未知任务数的方案介绍

《Java使用多线程处理未知任务数的方案介绍》这篇文章主要为大家详细介绍了Java如何使用多线程实现处理未知任务数,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 知道任务个数,你可以定义好线程数规则,生成线程数去跑代码说明:1.虚拟线程池:使用 Executors.newVir

一文带你深入了解Python中的GeneratorExit异常处理

《一文带你深入了解Python中的GeneratorExit异常处理》GeneratorExit是Python内置的异常,当生成器或协程被强制关闭时,Python解释器会向其发送这个异常,下面我们来看... 目录GeneratorExit:协程世界的死亡通知书什么是GeneratorExit实际中的问题案例

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言