Dynamo处理点云数据

2024-02-16 16:28
文章标签 数据 处理 点云 dynamo

本文主要是介绍Dynamo处理点云数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Hello大家好!我是九哥~

随着三维激光点云扫描技术的推广,越来越多的项目中应用到了三维激光点云扫描。基于三维点云数字化模型,在建筑工程项目设计、施工和改造等过程中,能够完成实测实量、偏差检测、变形监测、模型对比、场地构建、地形测绘、文物保护等方面的应用,实现真实、高精度的数据源残疾,基于此数据源形成的数字化虚拟模型,辅助项目团队实现更多的定性、定量和实景分析。

可是呢,Revit本身对于点云模型的支持还是很不友好的,就像DWG文件一样,链接进来以后,可发挥的空间就很小了。

基于此呢,今天来给大家分享一个好玩且强大的节点包——【Sastrugi】,这个包可以辅助我们在Dynamo中来处理点云数据。

包里面有很多节点,我们本次主要演示Pointcloud分组下的节点,分为Geometry和Graphics两组,先来总体看下:

接下来呢,咱们就挑一些节点,简单介绍下能干什么:

❉_Pointcloud Select Points By Local Sample

该节点允许用户通过在Active View中选择Pointcloud上的一个位置来选择特定数量的点云中的点,创建一个本地样本区域来提取点。

❉_Pointcloud Select Points By Intersecting Element

该节点使用相交元素作为过滤器,从Pointcloud Instance中获取随机点的样本。

❉_Pointcloud Get Point Count

此节点为所选的点云提取链接的Recap Project文件内的点数。

❉_Pointcloud Set Graphics Override for Scans

设置点云的颜色替换

❉_Pointcloud Select Points in View

本节点可以在不同的视图中,根据视图类型选择点云中的点:

    在平面视图中选择

    在选择的视图中选择点云

    在详图视图中选择点云

在3D视图中选择点云

在激活的视图中选择点云

最后画个重点,介绍两个Sastrugi包中的重磅节点:

❉_Pointcloud Column From Points

该节点通过评估输入点的布局来计算柱的形状和参数。

这里还有改进的空间,但是这个节点向我们证明点云翻模是有可行性的~

❉_Pointcloud RANSAC Plane Detection

这个节点比较特殊,需要Dynamo2.10+版本的才行,因为用到了Cpython和外部的python包。

这个节点接受点云点的输入XYZ列表,并根据RASAC算法将它们分组,以便在点云中定义特定的平面。在定义楼板、天花、墙、柱等时,这很方便。

好了,今天的分享就到这里了,小伙伴们快去尝试吧~

这篇关于Dynamo处理点云数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/715087

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言