python面向对象--方法解析顺序(MRO)

2024-02-16 12:32

本文主要是介绍python面向对象--方法解析顺序(MRO),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载:https://www.cnblogs.com/qunxiadexiaoxiangjiao/p/8311429.html

对于支持继承的编程语言来说,其方法(属性)可能定义在当前类,也可能来自于基类,所以在方法调用时就需要对当前类和基类进行搜索以确定方法所在的位置。而搜索的顺序就是所谓的「方法解析顺序」(Method Resolution Order,或MRO)。对于只支持单继承的语言来说,MRO 一般比较简单;而对于 Python 这种支持多继承的语言来说,MRO 就复杂很多。

先看一个「菱形继承」的例子:
在这里插入图片描述

如果 x 是 D 的一个实例,那么 x.show() 到底会调用哪个 show 方法呢?如果按照 [D, B, A, C] 的搜索顺序,那么 x.show() 会调用 A.show();如果按照 [D, B, C, A] 的搜索顺序,那么 x.show() 会调用 C.show()。由此可见,MRO 是把类的继承关系线性化的一个过程,而线性化方式决定了程序运行过程中具体会调用哪个方法。既然如此,那什么样的 MRO 才是最合理的?Python 中又是如何实现的呢?

Python 至少有三种不同的 MRO:

  • 经典类(classic class)的深度遍历。
  • Python 2.2 的新式类(new-style class)预计算。
  • Python 2.3 的新式类的C3 算法。它也是 Python 3 唯一支持的方式

经典类的MRO

Python 有两种类:经典类(classic class)和新式类(new-style class)。两者的不同之处在于新式类继承自 object。在 Python 2.1 以前,经典类是唯一可用的形式;Python 2.2 引入了新式类,使得类和内置类型更加统一;在 Python 3 中,新式类是唯一支持的类。

经典类采用了一种很简单的 MRO 方法:从左至右的深度优先遍历。以上述「菱形继承」为例,其查找顺序为 [D, B, A, C, A],如果只保留重复类的第一个则结果为 [D,B,A,C]。我们可以用 inspect.getmro 来获取类的 MRO:

>>> import inspect
>>> class A:
...     def show(self):
...         print "A.show()"
...
>>> class B(A): pass
>>> class C(A):
...     def show(self):
...         print "C.show()"
...
>>> class D(B, C): pass
>>> inspect.getmro(D)
(<class __main__.D at 0x105f0a6d0>, <class __main__.B at 0x105f0a600>, <class __main__.A at 0x105f0a668>, <class __main__.C at 0x105f0a738>)
>>> x = D()
>>> x.show()
A.show()

这种深度优先遍历对于简单的情况还能处理的不错,但是对于上述「菱形继承」其结果却不尽如人意:虽然 C.show() 是 A.show() 的更具体化版本(显示了更多的信息),但我们的x.show() 没有调用它,而是调用了 A.show()。这显然不是我们希望的结果。

对于新式类而言,所有的类都继承自 object,所以「菱形继承」是非常普遍的现象,因此不可能采用这种 MRO 方式。

Python 2.2 的新式类 MRO

为解决经典类 MRO 所存在的问题,Python 2.2 针对新式类提出了一种新的 MRO 计算方式:在定义类时就计算出该类的 MRO 并将其作为类的属性。因此新式类可以直接通过__mro__属性获取类的 MRO。
Python 2.2 的新式类 MRO 计算方式和经典类 MRO 的计算方式非常相似:它仍然采用从左至右的深度优先遍历,但是如果遍历中出现重复的类,只保留最后一个。重新考虑上面「菱形继承」的例子,由于新式类继承自 object 因此类图稍有改变[新式类菱形继承]:
在这里插入图片描述

按照深度遍历,其顺序为 [D, B, A, object, C, A, object],重复类只保留最后一个,因此变为 [D, B, C, A, object]。代码为:

>>> class A(object):
...     def show(self):
...         print "A.show()"
...
>>> class B(A): pass
>>> class C(A):
...     def show(self):
...         print "C.show()"
...
>>> class D(B, C): pass
>>> D.__mro__
(<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.A'>, <type 'object'>)
>>> x = D()
>>> x.show()
C.show()

这种 MRO 方式已经能够解决「菱形继承」问题,再让我们看个稍微复杂点的例子:

在这里插入图片描述

>>> class X(object): pass
>>> class Y(object): pass
>>> class A(X, Y): pass
>>> class B(Y, X): pass
>>> class C(A, B): pass

首先进行深度遍历,结果为 [C, A, X, object, Y, object, B, Y, object, X, object];然后,只保留重复元素的最后一个,结果为 [C, A, B, Y, X, object]。Python 2.2 在实现该方法的时候进行了调整,使其更尊重基类中类出现的顺序,其实际结果为 [C, A, B, X, Y, object]。

这样的结果是否合理呢?首先我们看下各个类中的方法解析顺序:对于 A 来说,其搜索顺序为[A, X, Y, object];对于 B,其搜索顺序为 [B, Y, X, object];对于 C,其搜索顺序为[C, A, B, X, Y, object]。我们会发现,B 和 C 中 X、Y 的搜索顺序是相反的!也就是说,当 B 被继承时,它本身的行为竟然也发生了改变,这很容易导致不易察觉的错误。此外,即使把 C 搜索顺序中 X 和 Y 互换仍然不能解决问题,这时候它又会和 A 中的搜索顺序相矛盾。

事实上,不但上述特殊情况会出现问题,在其它情况下也可能出问题。其原因在于,上述继承关系违反了线性化的「 单调性原则 」。Michele Simionato对单调性的定义为:

A MRO is monotonic when the following is true: if C1 precedes C2 in the linearization of C, then C1 precedes C2 in the linearization of any subclass of C. Otherwise, the innocuous operation of deriving a new class could change the resolution order of methods, potentially introducing very subtle bugs.

也就是说,子类不能改变基类的方法搜索顺序。在 Python 2.2 的 MRO 算法中并不能保证这种单调性,它不会阻止程序员写出上述具有二义性的继承关系,因此很可能成为错误的根源。

除了单调性之外,Python 2.2 及 经典类的 MRO 也可能违反继承的「 局部优先级 」,具体例子可以参见官方文档。采用一种更好的 MRO 方式势在必行。

C3 MRO

为解决 Python 2.2 中 MRO 所存在的问题,Python 2.3以后采用了 C3 方法来确定方法解析顺序。你如果在 Python 2.3 以后版本里输入上述代码,就会产生一个异常,禁止创建具有二义性的继承关系:

>>> class C(A, B): pass
Traceback (most recent call last):File "<ipython-input-8-01bae83dc806>", line 1, in <module>class C(A, B): pass
TypeError: Error when calling the metaclass basesCannot create a consistent method resolution
order (MRO) for bases X, Y

我们把类 C 的线性化(MRO)记为 L[C] = [C1, C2,…,CN]。其中 C1 称为 L[C] 的头,其余元素 [C2,…,CN] 称为尾。如果一个类 C 继承自基类 B1、B2、……、BN,那么我们可以根据以下两步计算出 L[C]:

L[object] = [object]
L[C(B1…BN)] = [C] + merge(L[B1]…L[BN], [B1][BN])

这里的关键在于 merge,其输入是一组列表,按照如下方式输出一个列表:

  1. 检查第一个列表的头元素(如 L[B1] 的头),记作 H。
  2. 若 H 未出现在其它列表的尾部,则将其输出,并将其从所有列表中删除,然后回到步骤1;否则,取出下一个列表的头部记作 H,继续该步骤。
  3. 重复上述步骤,直至列表为空或者不能再找出可以输出的元素。如果是前一种情况,则算法结束;如果是后一种情况,说明无法构建继承关系,Python 会抛出异常。

该方法有点类似于图的拓扑排序,但它同时还考虑了基类的出现顺序。我们用 C3 分析一下刚才的例子。
object,X,Y 的线性化结果比较简单:

L[object] = [object]
L[X] = [X, object]
L[Y] = [Y, object]

A 的线性化计算如下:

L[A] = [A] + merge(L[X], L[Y], [X], [Y])= [A] + merge([X, object], [Y, object], [X], [Y])= [A, X] + merge([object], [Y, object], [Y])= [A, X, Y] + merge([object], [object])= [A, X, Y, object]

注意第3步,merge([object], [Y, object], [Y]) 中首先输出的是 Y 而不是 object。这是因为 object 虽然是第一个列表的头,但是它出现在了第二个列表的尾部。所以我们会跳过第一个列表,去检查第二个列表的头部,也就是 Y。Y 没有出现在其它列表的尾部,所以将其输出。
同理,B 的线性化结果为

L[B] = [B, Y, X, object]

最后,我们看看 C 的线性化结果:

L[C] = [C] + merge(L[A], L[B], [A], [B])= [C] + merge([A, X, Y, object], [B, Y, X, object], [A], [B])= [C, A] + merge([X, Y, object], [B, Y, X, object], [B])= [C, A, B] + merge([X, Y, object], [Y, X, object])

到了最后一步我们没有办法继续计算下去 了:X 虽然是第一个列表的头,但是它出现在了第二个列表的尾部;Y 虽然是第二个列表的头,但是它出现在了第一个列表的尾部。因此,我们无法构建一个没有二义性的继承关系,只能手工去解决(比如改变 B 基类中 X、Y 的顺序)。
我们再看一个没有冲突的例子:

在这里插入图片描述

计算过程如下:

L[object] = [object]
L[D] = [D, object]
L[E] = [E, object]
L[F] = [F, object]
L[B] = [B, D, E, object]
L[C] = [C, D, F, object]
L[A] = [A] + merge(L[B], L[C], [B], [C])= [A] + merge([B, D, E, object], [C, D, F, object], [B], [C])= [A, B] + merge([D, E, object], [C, D, F, object], [C])= [A, B, C] + merge([D, E, object], [D, F, object])= [A, B, C, D] + merge([E, object], [F, object])= [A, B, C, D, E] + merge([object], [F, object])= [A, B, C, D, E, F] + merge([object], [object])= [A, B, C, D, E, F, object]

当然,可以用代码验证类的 MRO,上面的例子可以写作:

>>> class D(object): pass
>>> class E(object): pass
>>> class F(object): pass
>>> class B(D, E): pass
>>> class C(D, F): pass
>>> class A(B, C): pass
>>> A.__mro__
(<class '__main__.A'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.D'>,<class '__main__.E'>,<class '__main__.F'>)

s C(D, F): pass

class A(B, C): pass
A.mro
(<class ‘main.A’>, <class ‘main.B’>, <class ‘main.C’>, <class ‘main.D’>,<class ‘main.E’>,<class ‘main.F’>)


这篇关于python面向对象--方法解析顺序(MRO)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/714535

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本