【python】pyarrow.parquet+pandas:读取及使用parquet文件

2024-02-16 00:04

本文主要是介绍【python】pyarrow.parquet+pandas:读取及使用parquet文件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、前言
    • 1. 所需的库
    • 2. 终端指令
  • 二、pyarrow.parquet
    • 1. 读取Parquet文件
    • 2. 写入Parquet文件
    • 3. 对数据进行操作
    • 4. 导出数据为csv
  • 三、实战
    • 1. 简单读取
    • 2. 数据操作(分割feature)
    • 3. 迭代方式来处理Parquet文件
    • 4. 读取同一文件夹下多个parquet文件

  Parquet是一种用于列式存储压缩数据的文件格式,广泛应用于大数据处理和分析中。Python提供了多个库来处理Parquet文件,例如pyarrow和fastparquet。
  本文将介绍如何使用pyarrow.parquet+pandas库操作Parquet文件。

一、前言

1. 所需的库

import pyarrow.parquet as pq
import pandas as pd

  pyarrow.parquet模块,可以读取和写入Parquet文件,以及进行一系列与Parquet格式相关的操作。例如,可以使用该模块读取Parquet文件中的数据,并转换为pandas DataFrame来进行进一步的分析和处理。同时,也可以使用这个模块将DataFrame的数据保存为Parquet格式。

2. 终端指令

conda create -n DL python==3.11
conda activate DL
conda install pyarrow

pip install pyarrow

二、pyarrow.parquet

  当使用pyarrow.parquet模块时,通常的操作包括读取和写入Parquet文件,以及对Parquet文件中的数据进行操作和转换。以下是一些常见的使用方法:

1. 读取Parquet文件

import pyarrow.parquet as pqparquet_file = pq.ParquetFile('file.parquet')
data = parquet_file.read().to_pandas()
  • 使用pq.ParquetFile打开Parquet文件;
  • 使用read().to_pandas()方法将文件中的数据读取为pandas DataFrame

2. 写入Parquet文件

import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pqdf = pd.DataFrame({'col1': [1, 2, 3], 'col2': ['a', 'b', 'c']})
table = pa.Table.from_pandas(df)pq.write_table(table, 'output.parquet')
  • 将pandas DataFrame转换为Arrow的Table格式;
  • 使用pq.write_table方法将Table写入为Parquet文件。
parquet_file = pq.ParquetFile('output.parquet')
data = parquet_file.read().to_pandas()
print(data)

在这里插入图片描述

3. 对数据进行操作

import pyarrow.parquet as pq# 读取Parquet文件
parquet_file = pq.ParquetFile('output.parquet')
data = parquet_file.read().to_pandas()# 对数据进行筛选和转换
filtered_data = data[data['col1'] > 1]  # 筛选出col1大于1的行
print(filtered_data)
transformed_data = filtered_data.assign(col3=filtered_data['col1'] * 2)  # 添加一个新列col3,值为col1的两倍# 打印处理后的数据
print(transformed_data)

在这里插入图片描述

4. 导出数据为csv

import pyarrow.parquet as pq
import pandas as pdparquet_file = pq.ParquetFile('output.parquet')
data = parquet_file.read().to_pandas()df = pd.DataFrame(data)
csv_path = './data.csv'
df.to_csv(csv_path)
print(f'数据已保存到 {csv_path}')

在这里插入图片描述

三、实战

1. 简单读取

import pyarrow.parquet as pq
import pandas as pdparquet_file = pq.ParquetFile('./train_parquet/part-00014-918feee1-1ad5-4b08-8876-4364cc996930-c000.snappy.parquet')
data = parquet_file.read().to_pandas()df = pd.DataFrame(data)
csv_path = './data2.csv'
df.to_csv(csv_path)
print(f'数据已保存到 {csv_path}')

关于PyCharm调试操作可参照:PyCharm基础调试功能详解

在这里插入图片描述
点击右侧蓝色的View as DataFrame
在这里插入图片描述

  如图所示,feature在同一个格内,导出为:
在这里插入图片描述
注意看,省略号...位置真的就是省略号字符,没有数字,即

[0.27058824 0.         0.05882353 ... 0.47843137 0.36862745 0.97647059]

2. 数据操作(分割feature)

import pyarrow.parquet as pq
import pandas as pdparquet_file = pq.ParquetFile('./train_parquet/part-00014-918feee1-1ad5-4b08-8876-4364cc996930-c000.snappy.parquet')
data = parquet_file.read().to_pandas()# 将feature列中的列表拆分成单独的特征值
split_features = data['feature'].apply(lambda x: pd.Series(x))# 将拆分后的特征添加到DataFrame中
data = pd.concat([data, split_features], axis=1)
print(data.head(2))
# 删除原始的feature列
data = data.drop('feature', axis=1)# 保存到csv文件
csv_path = './data1.csv'
data.to_csv(csv_path, index=False)print(f'数据已保存到 {csv_path}')
  • 调试打开:
    在这里插入图片描述
  • excel打开:
    在这里插入图片描述
  • 文件大小对比
    在这里插入图片描述

部分内容援引自博客:使用python打开parquet文件

3. 迭代方式来处理Parquet文件

  如果Parquet文件非常大,可能会占用大量的内存。在处理大型数据时,建议使用迭代的方式来处理Parquet文件,以减少内存的占用。以下是一种更加内存友好的方式来处理Parquet文件:

import pyarrow.parquet as pq
import pandas as pd
import timestart_time = time.time()  # 记录开始时间# 使用迭代器迭代读取Parquet文件中的数据
data_iterator = pq.ParquetFile('./train_parquet/part-00014-918feee1-1ad5-4b08-8876-4364cc996930-c000.snappy.parquet').iter_batches(batch_size=100)# 初始化空的DataFrame用于存储数据
data = pd.DataFrame()# 逐批读取数据并进行处理
for batch in data_iterator:# 将RecordBatch转换为Pandas DataFramedf_batch = batch.to_pandas()# 将feature列中的列表拆分成单独的特征值split_features = df_batch['feature'].apply(lambda x: pd.Series(x))# 将拆分后的特征添加到DataFrame中df_batch = pd.concat([df_batch, split_features], axis=1)# 将处理后的数据追加到DataFrame中data = data._append(df_batch, ignore_index=True)# 删除原始的feature列
data = data.drop('feature', axis=1)# 保存到csv文件
csv_path = './data3.csv'
data.to_csv(csv_path, index=False)end_time = time.time()  # 记录结束时间
print(f'数据已保存到 {csv_path}')
print(f'总运行时间: {end_time - start_time} 秒')

输出:

数据已保存到 ./data3.csv
总运行时间: 4.251184940338135

4. 读取同一文件夹下多个parquet文件

import os
import pyarrow.parquet as pq
import pandas as pd
import timestart_time = time.time()  # 记录开始时间folder_path = './train_parquet/'
parquet_files = [f for f in os.listdir(folder_path) if f.endswith('.parquet')]# 初始化空的DataFrame用于存储数据
data = pd.DataFrame()# 逐个读取Parquet文件中的数据并进行处理
for file in parquet_files:file_path = os.path.join(folder_path, file)data_iterator = pq.ParquetFile(file_path).iter_batches(batch_size=1024)for batch in data_iterator:# 将RecordBatch转换为Pandas DataFramedf_batch = batch.to_pandas()# 将feature列中的列表拆分成单独的特征值split_features = df_batch['feature'].apply(lambda x: pd.Series(x))# 将拆分后的特征添加到DataFrame中df_batch = pd.concat([df_batch, split_features], axis=1)# 将处理后的数据追加到DataFrame中data = data._append(df_batch, ignore_index=True)# 删除原始的feature列
data = data.drop('feature', axis=1)# 保存到csv文件
csv_path = './data.csv'
data.to_csv(csv_path, index=False)end_time = time.time()  # 记录结束时间
print(f'数据已保存到 {csv_path}')
print(f'总运行时间: {end_time - start_time} 秒')

这篇关于【python】pyarrow.parquet+pandas:读取及使用parquet文件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/712934

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr