计算机组成原理(1)----主存储器

2024-02-15 22:28

本文主要是介绍计算机组成原理(1)----主存储器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.基本半导体元件及原理

2.寻址


1.基本半导体元件及原理

一个主存储器可以分为存储器,MAR(地址寄存器)和MDR(数据寄存器),这三个部件由在时序控制逻辑的控制下工作

其中存储体用来存放二进制数据0和1,1个存储体由多个存储单元构成,一个存储单元由多个存储元构成,存储元如下图所示:

其中包含两个半导体元件:

1.MOS管,MOS管可理解为一种电控开关,输入电压达到某个阈值时,MOS管就可以接通

2.电容,一个电容由两个金属板和中间的绝缘体构成,可以以电容是否保存电荷来记录2进制的0和1,当保存电荷时,记录的是2进制的1,接着再接通MOS管,在一端检测到电流,就意味着输出了2进制1

若想让电容保存2进制1,那么就需在一端输入高电平,再接通MOS管,电容的上下两个金属板存在电压差,就会存储电荷了。

所以电容充电过程就是写数据的过程,电容放电过程就是读数据的过程

若将多个存储元合理相连,就可以一次性读出和写入多个2进制数据,多个存储元组成一个存储单元,在这里,一行表示一个存储单元(也就是一个存储字),多个行就是一个存储体(也就是存储矩阵),如图所示,一个存储字的字长为8bit

这里区分存储字和字节:

一个存储字的字长看一行有几个存储元,例如上面存储字长为8bit

一个字节8bit,即1Byte=8bit

如何通过一个地址决定读写哪一个字,这就涉及译码器的使用:

n位地址会对应2^n个存储单元,译码器会根据地址寄存器中给的地址,转变为某一条选通线的高电平信号。

例如CPU给MAR(地址寄存器)传输的是000,3个0的十进制即0(每个地址会对应译码器的一条输出线,总共有2^3=8个地址,所以译码器的输出端有8条线),所以译码器会将第0根字选线高电平输出,那么第0根线对应的存储元都会被接通,其中的2进制数据就能被读出了。 

具体地,红色的字选线被接通后,会通过绿色的数据线(位线),把每一位的2进制信息传输到MDR(数据寄存器)中,接着CPU会通过数据总线从MDR中取走整个存储字的数据(数据总线的宽度和存储字长是相同的

这个存储体的总容量=存储单元个数*存储字长=2^3*1Byte=8B

还需添加一个控制电路,控制MAR和MDR和译码器,例如,CPU通过地址总线,将地址送到MAR中,但是,由于我们是通过电信号传送2进制数据,而电信号可能会有不稳定的情况,所以在电信号稳定之前,这一电信号是不能传送给译码器的,所以只有电信号稳定,控制电路才能打开译码器的开关,让译码器接收这一地址,给出相应的数据信号,同理,输出时,只有输出的电信号稳定,控制电路才会使MDR通过数据总线输出数据信号给CPU

控制电路还需要连接片选线\overline{CS}(chip select,芯片选择信号)或\overline{CE}(chip enable,芯片使能信号),这些信号低电平有效,当我们给片选线加低电平时,表示这块芯片可以工作

一个内存条可能包含多块存储芯片,如果只想读取某块存储芯片指定地址的数据,那么只需要将这块芯片的片选信号使能(给低电平)即可。其他芯片(给高电平)

这些存储芯片会对外保留金属引脚,这些金属引脚用来接收地址线,数据线,读/写控制线,片选线传来的数据

n位地址--->2^n个存储单元
总容量=存储单元个数x存储字长=2^3 x 8bit =2^3 x 1Byte = 8B
8(存储单元个数)x8(存储字长)位的存储芯片

同时,控制电路还会连接读/写控制线,可以为一个读/写控制线(一根读/写线\overline{WE}低电平写高电平读),或两个线,一个读控制线(\overline{OE}允许读),一个写控制线(\overline{WE}允许写)

我们忽略内部的结构,就可得到下图:

存储矩阵就是存储体

译码驱动就是译码器+驱动器(为了使译码器输出的高电平信号稳定,通常会在译码器后添加驱动器,保证译码器输出的信号稳定)

读写电路包括上图的绿色线,红色线,以及控制电路

2.寻址

如下图所示,该存储体的字长为4B,总容量为1KB,即256个字,也就是总共256行

按字节寻址:总共1K个单元(地址线:10根),每个单元 1 B

按字寻址:256个单元(地址线:8根),每个单元 4 B

地址线为8根,只需要将地址算数左移两位,即在末尾添加两个0

例如要访问1号字,那就在1后面添加两个00,100:4,得到这个字起始字节的字节地址为4

再例如,访问2号字,在10后面添加两个00,1000:8,得到这个字起始字节的字节地址为8

按半字寻址:512个单元,每个单元 2 B

按双字寻址:128个单元,每个单元 8 B

这篇关于计算机组成原理(1)----主存储器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/712713

相关文章

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

hdu4407容斥原理

题意: 有一个元素为 1~n 的数列{An},有2种操作(1000次): 1、求某段区间 [a,b] 中与 p 互质的数的和。 2、将数列中某个位置元素的值改变。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.Inpu