DS:二叉树的顺序结构及堆的实现

2024-02-15 17:20

本文主要是介绍DS:二叉树的顺序结构及堆的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

                                       创作不易,兄弟们给个三连!!

一、二叉树的顺序存储

      顺序结构指的是利用数组来存储,一般只适用于表示完全二叉树,原因如上图,存储不完全二叉树会造成空间上的浪费,有的人又会问,为什么图中空的位置不能存储呢??原因是我们需要根据数组的下标关系才能访问到对应的节点!!有以下两个下标关系公式:

1、父亲找孩子:leftchild=parent*2+1,rightchild=parent*2+2

2、孩子找父亲:parent=(child-1)/2   要注意,这边无论用左孩子算还是右孩子算都是可以的,因为一般俩说,(child-1)/2 由于int类型向下取整的特点,所以得到的结果都是一样的!!

      所以我们想要上面这种方式去访问节点,并且还不希望有大量的空间浪费,现实中只有堆才会使用数组存储,二叉树的顺序存储中在物理上是一个数组,再逻辑上是一颗二叉树!!

二、堆的概念及结构

    现实中我们把堆(类似完全二叉树)使用顺序结构来存储,要注意这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分区。

   如果有一个关键码的集合k,我们将他的全部元素按照完全二叉树的存储逻辑放在一个一维数组中,则成为堆,根节点最大的堆叫做大堆,根节点最小的堆叫做小堆。 

堆的性质:

1、堆中某个节点的值总是不大于或不小于其父节点的值

2、堆总是一颗完全二叉树

注意:并不一定有序 

三、堆的实现

假设我们实现小堆

3.1 相关结构体的创建

跟顺序表的形式是一样的,但是换了个名字

typedef int HPDataType;
typedef struct Heap
{HPDataType * a;int size;int capacity;
}Heap;

3.2 堆的初始化

void HeapInit(Heap* php)
{assert(php);php->a = NULL;php->capacity = php->size = 0;
}

3.3 堆的插入

堆的插入很简单,但是我们要保证堆插入后还能维持堆的形状

所以我们在插入后,还要进行向上调整,也就是孩子要根据下标关系找到自己的父亲去比较,小就交换

void HeapPush(Heap* php, HPDataType x)
{assert(php);//首先要判断是否需要扩容if (php->size == php->capacity){int newcapacity = php->capacity == 0 ? 4 : 2 * php->capacity;HPDataType* temp = (HPDataType*)realloc(php->a,sizeof(HPDataType) * newcapacity);if (temp == NULL){perror("malloc fail");exit(1);}//扩容成功php->a = temp;php->capacity = newcapacity;}//扩容后,我们插入这个元素并size++php->a[php->size++] = x;//但是插入之后可能会破坏堆的结构,所以我们需要这个元素和他的父辈进行逐个比较, AdjustUp(php->a,php->size-1);//封装一个向上调整函数,传入数组和新加元素的下标
}

3.4 向上调整算法

void AdjustUp(HPDataType* a, int child)
{assert(a);//通过孩子找父亲  parent=(child-1)/2int parent = (child - 1) / 2;//孩子和父亲开始比较,如果孩子小,就交换,如果孩子大,退出循环while (child>0)//如果孩子变成了根节点,就没有必要再找了,因为已经没有父母了//如果用parent>=0来判断,那么由于(0-1)/2是-1/2,取整后还是0,就会一直死循环,所以必须用孩子来当循环条件{if (a[child] < a[parent])//孩子小,交换{Swap(&a[child], &a[parent]);//但是交换过后,可能还需要继续往上比,所以我们要让原来的父亲变成孩子,然后再找新的父亲进行比较child = parent;parent = (child - 1) / 2;}else//孩子大,退出break;}
}

注:这里的向上调整算法和后面向下调整算法我们都不用跟堆有关的接口,原因就是这个算法的运用范围很广,可以用在堆排序以及top-k问题中!!

3.5 交换函数

void Swap(HPDataType* p1, HPDataType* p2)
{HPDataType temp = *p1;*p1 = *p2;*p2 = temp;
}

3.6 堆的删除

         一般来说,如果直接删除堆的最后一个元素,其实是没什么意义的,一行代码就可以搞定,没必要封装什么函数,所以这里的堆的删除指的是删除根部的元素!!

        

void HeapPop(Heap* php)//一般来说,堆中的删除指的是删除根位置的数据
//如果直接删除根然后往前挪动一位,那么亲缘关系就会十分混乱,为了能够尽量在调整中减少对关系的改变
//我们将根部元素与最后一个元素进行交换之后再删除,此时的根是原先的最后一个元素
//然后将该元素进行向下调整(封装一个函数,传入数组、元素个数、)
{assert(php);assert(!HeapEmpty(php));//为空的话没有删除的必要Swap(&php->a[0], &php->a[php->size - 1]);php->size--;//开始向下调整AdjustDown(php->a, php->size,0);
}

3.7 向下调整算法

void AdjustDown(HPDataType* a, int n,int parent)
{assert(a);//此时根部为原来的最后一个元素,往下比较//即通过父亲去找到自己的孩子,如果孩子比自己小,就得交换位置,如果孩子比自己大,就退出//但是因为父亲有一个左孩子parent*2+1,右孩子parent*2+2,我们选择孩子中较小的和自己交换int child = parent * 2 + 1;//假设左孩子比右孩子小while (child<n)//当child超出个数的时候结束{if (child+1<n && a[child + 1]<a[child])//如果右孩子比左孩子小,假设错误,修正错误//注意,一定不能写反,要注意只有左孩子没有右孩子的情况child++;if (a[child] < a[parent])//如果孩子小于父亲,交换{Swap(&a[child], &a[parent]);//交换完后,让原来的孩子变成父亲,然后再找新的孩子parent = child;child = parent * 2 + 1;}elsebreak;//如果孩子大于等于父亲,直接退出}
}

       在上述算法中,我们应用了先假设再推翻的方法,一开始我们先假设左孩子比较小,然后我们再给个条件判断,如果左孩子大于右孩子,假设不成立,再推翻,这样可以保证我们的child变量一定是较小的孩子!! 

       虽然这里的parent很明显是从a[0]开始,好像不需要专门去传一个parent的参数,但是这也是为了之后的堆排序做准备!

3.8 取堆顶的数据

HPDataType HeapTop(Heap* php)
{assert(php);assert(!HeapEmpty(php));//为空的话没有取的必要return php->a[0];
}

3.9 堆的数据个数

int HeapSize(Heap* php)
{assert(php);return php->size;
}

3.10 堆的判空

bool HeapEmpty(Heap* php)
{assert(php);return php->size == 0;
}

3.11 堆的销毁

void HeapDestory(Heap* php)
{assert(php);free(php->a);php->a = NULL;php->size = php->capacity = 0;
}

3.12 堆的打印(测试)

我们要实现堆的打印,利用我们之前封装的函数,每获取一次堆顶元素就删除一次,直到堆删完就可以获取全部的元素了!!

#include"Heap.h"
int main()//该方法实现堆的顺序打印
{Heap hp;HeapInit(&hp);int a[] = { 55,100,70,32,50,60 };for (int i = 0; i < sizeof(a) / sizeof(int); i++)HeapPush(&hp, a[i]);//不断进堆while (!HeapEmpty(&hp)){int top = HeapTop(&hp);printf("%d\n", top);HeapPop(&hp);}HeapDestory(&hp);return 0;
}

前面只是先创建一个堆,从while循环开始才是实现对堆的打印!!

运行结果 :32 50 55 60 70 100

          我们发现了一个情况:按道理来说堆只有父子节点之间有大小关系,兄弟之间没有的,但是我们最后打印出来的结果却完成了排序!!!下面我们来进行分析

     总之任何一个堆,我们都可以通过不断地pop去实现它的顺序打印!!堆排序后面会介绍!

四、堆实现的全部代码

4.1 Heap.h

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>typedef int HPDataType;
typedef struct Heap
{HPDataType * a;int size;int capacity;
}Heap;void Swap(HPDataType* p1, HPDataType* p2);//实现父亲和孩子的交换
void AdjustUp(HPDataType* a, int child);//向上调整算法// 堆的初始化
void HeapInit(Heap* php);
// 堆的插入
void HeapPush(Heap* php, HPDataType x);
// 堆的删除
void HeapPop(Heap* php);
// 取堆顶的数据
HPDataType HeapTop(Heap* php);
// 堆的数据个数
int HeapSize(Heap* php);
// 堆的判空
bool HeapEmpty(Heap* php);
// 堆的销毁
void HeapDestory(Heap* php);

4.2 Heap.c

#include"Heap.h"
//当前实现小堆
void HeapInit(Heap* php)
{assert(php);php->a = NULL;php->capacity = php->size = 0;
}void Swap(HPDataType* p1, HPDataType* p2)
{HPDataType temp = *p1;*p1 = *p2;*p2 = temp;
}void AdjustUp(HPDataType* a, int child)
{assert(a);//通过孩子找父亲  parent=(child-1)/2int parent = (child - 1) / 2;//孩子和父亲开始比较,如果孩子小,就交换,如果孩子大,退出循环while (child>0)//如果孩子变成了根节点,就没有必要再找了,因为已经没有父母了//如果用parent>=0来判断,那么由于(0-1)/2是-1/2,取整后还是0,就会一直死循环,所以必须用孩子来当循环条件{if (a[child] < a[parent])//孩子小,交换{Swap(&a[child], &a[parent]);//但是交换过后,可能还需要继续往上比,所以我们要让原来的父亲变成孩子,然后再找新的父亲进行比较child = parent;parent = (child - 1) / 2;}else//孩子大,退出break;}
}void AdjustDown(HPDataType* a, int n,int parent)
{assert(a);//此时根部为原来的最后一个元素,往下比较//即通过父亲去找到自己的孩子,如果孩子比自己小,就得交换位置,如果孩子比自己大,就退出//但是因为父亲有一个左孩子parent*2+1,右孩子parent*2+2,我们选择孩子中较小的和自己交换int child = parent * 2 + 1;//假设左孩子比右孩子小while (child<n)//当child超出个数的时候结束{if (child+1<n && a[child + 1]<a[child])//如果右孩子比左孩子小,假设错误,修正错误//注意,一定不能写反,要注意只有左孩子没有右孩子的情况child++;if (a[child] < a[parent])//如果孩子小于父亲,交换{Swap(&a[child], &a[parent]);//交换完后,让原来的孩子变成父亲,然后再找新的孩子parent = child;child = parent * 2 + 1;}elsebreak;//如果孩子大于等于父亲,直接退出}
}void HeapPush(Heap* php, HPDataType x)
{assert(php);//首先要判断是否需要扩容if (php->size == php->capacity){int newcapacity = php->capacity == 0 ? 4 : 2 * php->capacity;HPDataType* temp = (HPDataType*)realloc(php->a,sizeof(HPDataType) * newcapacity);if (temp == NULL){perror("malloc fail");exit(1);}//扩容成功php->a = temp;php->capacity = newcapacity;}//扩容后,我们插入这个元素并size++php->a[php->size++] = x;//但是插入之后可能会破坏堆的结构,所以我们需要这个元素和他的父辈进行逐个比较, AdjustUp(php->a,php->size-1);//封装一个向上调整函数,传入数组和新加元素的下标
}void HeapPop(Heap* php)//一般来说,堆中的删除指的是删除根位置的数据
//如果直接删除根然后往前挪动一位,那么亲缘关系就会十分混乱,为了能够尽量在调整中减少对关系的改变
//我们将根部元素与最后一个元素进行交换之后再删除,此时的根是原先的最后一个元素
//然后将该元素进行向下调整(封装一个函数,传入数组、元素个数、)
{assert(php);assert(!HeapEmpty(php));//为空的话没有删除的必要Swap(&php->a[0], &php->a[php->size - 1]);php->size--;//开始向下调整AdjustDown(php->a, php->size,0);
}HPDataType HeapTop(Heap* php)
{assert(php);assert(!HeapEmpty(php));//为空的话没有取的必要return php->a[0];
}int HeapSize(Heap* php)
{assert(php);return php->size;
}bool HeapEmpty(Heap* php)
{assert(php);return php->size == 0;
}void HeapDestory(Heap* php)
{assert(php);free(php->a);php->a = NULL;php->size = php->capacity = 0;
}

4.3 test.c(测试)

#include"Heap.h"
int main()//该方法实现堆的顺序打印
{Heap hp;HeapInit(&hp);int a[] = { 55,100,70,32,50,60 };for (int i = 0; i < sizeof(a) / sizeof(int); i++)HeapPush(&hp, a[i]);//不断进堆while (!HeapEmpty(&hp)){int top = HeapTop(&hp);printf("%d\n", top);HeapPop(&hp);}HeapDestory(&hp);return 0;
}

五、堆的应用

5.1 堆排序

要对数组排序前,我们要用堆排序,首先要建堆!

大家看看之前堆的打印时的测试代码逻辑的方法

就是我们得到一个数组,就先建堆,然后先把数组push进去,再pop出来,是可以实现有序的

但是现在我们的需求不是打印出来,而是将他排好序后放进数组里,所以们可以这么写:

void HeapSort(int* a, int n)
{HP hp;HeapInit(&hp);// N*logNfor (int i = 0; i < n; ++i){HeapPush(&hp, a[i]);}// N*logNint i = 0;while (!HeapEmpty(&hp)){int top = HeapTop(&hp);a[i++] = top;HeapPop(&hp);}HeapDestroy(&hp);
}

 这个方法固然是可以的,但是很麻烦,原因如下:

1、每次都要建立一个新的堆,然后再销毁,比较麻烦,而且空间复杂度比较高 

2、我通过把数组放进变成堆,还要再把堆拷贝到数组中,数据的拷贝是很繁琐的!!

所以我们要思考一种方式避免数据的拷贝,所以就有了向上调整建堆和向下调整建堆的方法了!!

也就是我们在原数组的基础上直接建堆,然后向下调整排序即可,下面会详细介绍

5.1.1 向上调整建堆

 假设数组有n个元素

for (int i = 1; i < n; i++)
{AdjustUp(a, i);
}

5.1.2 向下调整建堆

for (int i = (n-1-1)/2; i >= 0; i--)
{AdjustDown(a, n, i);
}

5.1.3 堆排序的实现

那我们究竟选择向下建堆好还是向下建堆好呢??我们来分析一下

所以我们发现向上调整建堆的时间复杂度大概是N*logN,而向下调整建堆的时间复杂度是N

其实们在推导的时候也能发现,向上调整建堆是节点多的情况调整得多,节点少的情况调整的少,次数是多*多+少*少 ,而向下调整建堆是节点多的情况调整得少,节点少的情况调整的多,次数是多*少+少*多,显然是向下调整建堆是更有优势的!!

     接下去我们建好堆,就要想着怎么去排序了,我们思考一下,之前我们对堆的打印时,不断pop打印出来有序结果的原因是什么??原因就是pop函数里的向下调整算法!!每一次交换根节点和尾节点,将每个节点进行向下调整,最后就可以得到有序的

 

 因为我们之前实现的向下调整算法是小堆的,所以我们这边来实现一个降序的堆排序算法

void HeapSort(int* a, int n)
{//降序  建小堆//升序  建大堆for (int i = (n-1-1)/2; i >=0;i--)AdjustDown(a, n, i);//开始排序   先交换向下调整int end = n - 1;while (end >= 0){Swap(&a[0], &a[end]);AdjustDown(a, end, 0);--end;}
}

 

 如果我们想实现升序,将向下调整算法按照大堆的规则改一下就行 

向下调整算法和向上调整算法的空间复杂度都是(logN) 

堆排序中,建堆的时间复杂度是o(N),排序的时间复杂度是(N*logN)所以堆排序的总时间复杂度是N*logN

5.2 TOP-K问题

Top-k问题:即求数据中前k个最大的元素或者是最小的元素,一般情况下的数据量都比较大!

比如:专业前10名、世界五百强、富豪榜前十

堆排序能够帮助我们在大量数据中筛选出最好的几个。

5.2.1 思路

        比如说我们要从1000个学生的成绩中找到前10个分数最高的,方法就是将所有的数据放在一个数组里,直接建大堆,然后pop9次就可以找到了(pop中的向下调整算法可以使得每次pop出去的都是最大值,然后pop9次的原因是因为第10次就可以直接去获取堆顶元素即可)

但是有些情况,上述思路解决不了,分析:

5.2.2 通过数组验证TOP-K

void PrintTopK(int* a, int n, int k)
{//建前k个建小堆for (int i = (k - 1 - 1) / 2; i >= 0; i--)AdjustDown(a, k, i);//将剩余n个数据不断与堆顶元素比较,大就交换,然后向下调整for (int i = k; i < n; i++){if (a[i] > a[0]){a[0] = a[i];//直接覆盖就行,不用交换AdjustDown(a, k, 0);}}//打印for(int i=0;i<k;i++)printf("%d ", a[i]);
}void TestTopk()
{int n = 10000;int* a = (int*)malloc(sizeof(int) * n);srand((unsigned int)time(NULL));for (size_t i = 0; i < n; ++i){a[i] = rand() % 1000000;//随机数范围0-999999}
// 为了能够方便找到这些数a[5] = 1000000 + 1;a[1231] = 1000000 + 2;a[531] = 1000000 + 3;a[5121] = 1000000 + 4;a[115] = 1000000 + 5;a[2335] = 1000000 + 6;a[9999] = 1000000 + 7;a[76] = 1000000 + 8;a[423] = 1000000 + 9;a[3144] = 1000000 + 10;PrintTopK(a, n, 10);
}int main()
{TestTopk();return 0;
}

5.2.3 通过文件验证TOP-K

其实用数组的方法,并不能有效地模拟,我们可以尝试用文件的方式来验证

void CreateNDate()
{// 造数据int n = 10000;srand((unsigned int)time(NULL));const char* file = "data.txt";FILE* fin = fopen(file, "w");if (fin == NULL){perror("fopen error");return;}for (size_t i = 0; i < n; ++i){int x = rand() % 1000000;fprintf(fin, "%d\n", x);//将随机数写进文件}fclose(fin);
}void PrintTopK(int k)
{const char* file = "data.txt";FILE* fout = fopen(file, "r");if (fout == NULL){perror("fopen fail");return;}int* kminheap = (int*)malloc(sizeof(int) * k);if (kminheap == NULL){perror("malloc fail");return;}for (int i = 0; i < k; i++){fscanf(fout, "%d", &kminheap[i]);//从文件读取数据}// 建小堆for (int i = (k - 1 - 1) / 2; i >= 0; i--){AdjustDown(kminheap, k, i);}int val = 0;while (!feof(fout))//feof是文件结束的标识,如果返回1,则说明文件结束{fscanf(fout, "%d", &val);//fscaf的光标闪动到原先的位置,所以会从k的位置开始读if (val > kminheap[0]){kminheap[0] = val;AdjustDown(kminheap, k, 0);}}for (int i = 0; i < k; i++){printf("%d ", kminheap[i]);}printf("\n");
}
int main()//该方法实现堆的顺序打印
{CreateNDate();PrintTopK(5);return 0;
}

友友们上述代码有不理解的,看看博主关于文件操作里的函数介绍:

C语言:文件操作详解-CSDN博客

 不太好找,所以我们可以先注释创造数据的文件,然后再文件中修该出5个最大数,然后再执行一次函数

以上就是通过数组验证top和利用文件验证tok的方法!!

 

这篇关于DS:二叉树的顺序结构及堆的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/712033

相关文章

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

MySQL8.0设置redo缓存大小的实现

《MySQL8.0设置redo缓存大小的实现》本文主要在MySQL8.0.30及之后版本中使用innodb_redo_log_capacity参数在线更改redo缓存文件大小,下面就来介绍一下,具有一... mysql 8.0.30及之后版本可以使用innodb_redo_log_capacity参数来更改

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形