Luogu P4709 信息传递 (群论、生成函数、多项式指数函数)

本文主要是介绍Luogu P4709 信息传递 (群论、生成函数、多项式指数函数),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题意:

1449777-20190727084009870-1253428146.png

1449777-20190727084020059-80240764.png

题解: 这道题我思路大方向是正确的,但是生成函数推错导致一直WA,看了标程才改对……

首先一个长为\(m\)的轮换的\(n\)次幂会分裂成\(\gcd(n,m)\)个长为\(\frac{m}{\gcd(n,m)}\)的轮换
所以合并的时候相当于对于一个长度\(l\)若存在一个\(m\)使得\(\frac{m}{\gcd(n,m)}=l\)\(\gcd(n,m)\)个长度为\(l\)的轮换可以合并

显然不同长度的轮换是互不影响的,那么我们可以分开每种长度计算
就相当于对于一个长度为\(l\)的有标号的轮换,要把它们划分成若干无标号集合,每个集合大小都在给定的集合\(S\)内,并且每个集合有权值(合并的方案数),一种划分方案的权值为所有集合权值之积,求所有划分方案权值总和
那么显然这个东西的EGF就等于\(\exp(\sum_{i\in S} \frac{w_i}{i!})\), \(w_i\)为权值

如何求\(w_i\)? 在这里我出了问题
正确的答案是,假设\(k\)个长度为\(l\)的轮换合并,方案数为\(l^{k-1}(k-1)!\), 也就是\(\frac{l^kk!}{lk}\).
这大概是因为,假设我们定住第一个轮换的第一个元素的位置,那么其余每个轮换自身内部的顺序都可以改变,这样是\(l^{k-1}\)种;这些轮换之间的顺序也可以改变,这样是\((k-1)!\)种。

代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#include<vector>
#define llong long long
using namespace std;inline int read()
{int x=0; bool f=1; char c=getchar();for(;!isdigit(c);c=getchar()) if(c=='-') f=0;for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');if(f) return x;return -x;
}const int N = 1<<19;
const int LGN = 19;
const int P = 998244353;
const int G = 3;llong quickpow(llong x,llong y)
{llong cur = x,ret = 1ll;for(int i=0; y; i++){if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}cur = cur*cur%P;}return ret;
}
llong mulinv(llong x) {return quickpow(x,P-2);}namespace FFT
{llong tmp1[N+3],tmp2[N+3],tmp3[N+3],tmp4[N+3],tmp5[N+3],tmp6[N+3],tmp7[N+3],tmp8[N+3],tmp9[N+3],tmp10[N+3];llong tst1[N+3],tst2[N+3],tst3[N+3];llong sexp[N+3];int fftid[N+3];int getdgr(int n) {int ret = 1; while(ret<=n) ret<<=1; return ret;}void init_fftid(int dgr){int len = 0; for(int i=1; i<=LGN; i++) {if((1<<i)==dgr) {len = i; break;}}fftid[0] = 0; for(int i=1; i<dgr; i++) fftid[i] = (fftid[i>>1]>>1)|((i&1)<<(len-1));}void ntt(int dgr,int coe,llong poly[],llong ret[]){init_fftid(dgr);if(poly==ret) {for(int i=0; i<dgr; i++) {if(i<fftid[i]) swap(ret[i],ret[fftid[i]]);}}else {for(int i=0; i<dgr; i++) ret[i] = poly[fftid[i]];}for(int i=1; i<=(dgr>>1); i<<=1){llong tmp = quickpow(G,(P-1)/(i<<1));if(coe==-1) {tmp = mulinv(tmp);}sexp[0] = 1ll; for(int j=1; j<i; j++) sexp[j] = sexp[j-1]*tmp%P;for(int j=0; j<dgr; j+=(i<<1)){for(llong *k=ret+j,*kk=sexp; k<ret+i+j; k++,kk++){llong y = k[i]*(*kk)%P;k[i] = (*k)-y<0 ? (*k)-y+P : (*k)-y;(*k) = (*k)+y>=P ? (*k)+y-P : (*k)+y;}}}if(coe==-1){llong tmp = mulinv(dgr);for(int i=0; i<dgr; i++) ret[i] = ret[i]*tmp%P;}}void polymul(int dgr,llong poly1[],llong poly2[],llong ret[]){ntt((dgr<<1),1,poly1,tmp1); ntt((dgr<<1),1,poly2,tmp2);for(int i=0; i<(dgr<<1); i++) ret[i] = tmp1[i]*tmp2[i]%P;ntt((dgr<<1),-1,ret,ret);}void polyinv(int dgr,llong poly[],llong ret[]){for(int i=0; i<(dgr<<1); i++) ret[i] = tmp3[i] = tmp4[i] = tmp5[i] = 0ll;ret[0] = mulinv(poly[0]);for(int i=1; i<=(dgr>>1); i<<=1){for(int j=0; j<(i<<1); j++) tmp3[j] = poly[j];ntt((i<<2),1,tmp3,tmp4); ntt((i<<2),1,ret,tmp5);for(int j=0; j<(i<<2); j++) tmp3[j] = tmp4[j]*tmp5[j]%P*tmp5[j]%P;ntt((i<<2),-1,tmp3,tmp4);for(int j=0; j<(i<<1); j++) ret[j] = (ret[j]+ret[j]-tmp4[j]+P)%P;}}void polyder(int dgr,llong poly[],llong ret[]){for(int i=0; i<dgr-1; i++) ret[i] = poly[i+1]*(i+1)%P;ret[dgr-1] = 0ll;}void polyint(int dgr,llong poly[],llong ret[]){for(int i=1; i<dgr; i++) ret[i] = poly[i-1]*mulinv(i)%P;ret[0] = 0ll;}void polyln(int dgr,llong poly[],llong ret[]){for(int i=0; i<(dgr<<1); i++) ret[i] = tmp6[i] = tmp7[i] = tmp8[i] = 0ll;polyder(dgr,poly,tmp6);polyinv(dgr,poly,tmp7);polymul(dgr,tmp6,tmp7,tmp8);polyint(dgr,tmp8,ret);}void polyexp(int dgr,llong poly[],llong ret[]){for(int i=0; i<(dgr<<1); i++) ret[i] = tmp9[i] = tmp10[i] = 0ll;ret[0] = 1ll;for(int i=1; i<=(dgr>>1); i<<=1){polyln((i<<1),ret,tmp9);for(int j=0; j<(i<<1); j++) tmp9[j] = (-tmp9[j]+poly[j]+P)%P; tmp9[0]++;polymul((i<<2),ret,tmp9,tmp10);for(int j=0; j<(i<<1); j++) ret[j] = tmp10[j];}}
}
int permu[N+3];
int a[N+3];
int dgr[N+3];
bool vis[N+3];
vector<int> s[N+3];
llong f[N+3],expf[N+3];
llong fact[N+3];
int n;int gcd(int x,int y) {return y==0?x:gcd(y,x%y);}int main()
{fact[0] = 1ll; for(int i=1; i<=N; i++) fact[i] = fact[i-1]*i%P;scanf("%d",&n);for(int i=1; i<=n; i++) scanf("%d",&permu[i]);for(int i=1; i<=n; i++){if(vis[i]) continue;int len = 1; vis[i] = true;for(int j=permu[i]; j!=i; j=permu[j]){len++;vis[j] = true;}a[len]++;}for(int i=1; i<=n; i++){int g = gcd(i,n),l = i/gcd(i,n);s[l].push_back(g);}llong ans = 1ll;for(int i=1; i<=n; i++){if(a[i]==0) continue;int dgr = FFT::getdgr(a[i]);for(int j=0; j<s[i].size(); j++){if(s[i][j]<dgr){f[s[i][j]] = (f[s[i][j]]+mulinv(s[i][j])*quickpow(i,s[i][j]-1))%P;}}FFT::polyexp(dgr,f,expf);ans = ans*expf[a[i]]%P*fact[a[i]]%P;for(int j=0; j<(dgr<<1); j++) f[j] = expf[j] = 0ll;}printf("%lld\n",ans);return 0;
}

这篇关于Luogu P4709 信息传递 (群论、生成函数、多项式指数函数)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711826

相关文章

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与