Luogu P4709 信息传递 (群论、生成函数、多项式指数函数)

本文主要是介绍Luogu P4709 信息传递 (群论、生成函数、多项式指数函数),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题意:

1449777-20190727084009870-1253428146.png

1449777-20190727084020059-80240764.png

题解: 这道题我思路大方向是正确的,但是生成函数推错导致一直WA,看了标程才改对……

首先一个长为\(m\)的轮换的\(n\)次幂会分裂成\(\gcd(n,m)\)个长为\(\frac{m}{\gcd(n,m)}\)的轮换
所以合并的时候相当于对于一个长度\(l\)若存在一个\(m\)使得\(\frac{m}{\gcd(n,m)}=l\)\(\gcd(n,m)\)个长度为\(l\)的轮换可以合并

显然不同长度的轮换是互不影响的,那么我们可以分开每种长度计算
就相当于对于一个长度为\(l\)的有标号的轮换,要把它们划分成若干无标号集合,每个集合大小都在给定的集合\(S\)内,并且每个集合有权值(合并的方案数),一种划分方案的权值为所有集合权值之积,求所有划分方案权值总和
那么显然这个东西的EGF就等于\(\exp(\sum_{i\in S} \frac{w_i}{i!})\), \(w_i\)为权值

如何求\(w_i\)? 在这里我出了问题
正确的答案是,假设\(k\)个长度为\(l\)的轮换合并,方案数为\(l^{k-1}(k-1)!\), 也就是\(\frac{l^kk!}{lk}\).
这大概是因为,假设我们定住第一个轮换的第一个元素的位置,那么其余每个轮换自身内部的顺序都可以改变,这样是\(l^{k-1}\)种;这些轮换之间的顺序也可以改变,这样是\((k-1)!\)种。

代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#include<vector>
#define llong long long
using namespace std;inline int read()
{int x=0; bool f=1; char c=getchar();for(;!isdigit(c);c=getchar()) if(c=='-') f=0;for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');if(f) return x;return -x;
}const int N = 1<<19;
const int LGN = 19;
const int P = 998244353;
const int G = 3;llong quickpow(llong x,llong y)
{llong cur = x,ret = 1ll;for(int i=0; y; i++){if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}cur = cur*cur%P;}return ret;
}
llong mulinv(llong x) {return quickpow(x,P-2);}namespace FFT
{llong tmp1[N+3],tmp2[N+3],tmp3[N+3],tmp4[N+3],tmp5[N+3],tmp6[N+3],tmp7[N+3],tmp8[N+3],tmp9[N+3],tmp10[N+3];llong tst1[N+3],tst2[N+3],tst3[N+3];llong sexp[N+3];int fftid[N+3];int getdgr(int n) {int ret = 1; while(ret<=n) ret<<=1; return ret;}void init_fftid(int dgr){int len = 0; for(int i=1; i<=LGN; i++) {if((1<<i)==dgr) {len = i; break;}}fftid[0] = 0; for(int i=1; i<dgr; i++) fftid[i] = (fftid[i>>1]>>1)|((i&1)<<(len-1));}void ntt(int dgr,int coe,llong poly[],llong ret[]){init_fftid(dgr);if(poly==ret) {for(int i=0; i<dgr; i++) {if(i<fftid[i]) swap(ret[i],ret[fftid[i]]);}}else {for(int i=0; i<dgr; i++) ret[i] = poly[fftid[i]];}for(int i=1; i<=(dgr>>1); i<<=1){llong tmp = quickpow(G,(P-1)/(i<<1));if(coe==-1) {tmp = mulinv(tmp);}sexp[0] = 1ll; for(int j=1; j<i; j++) sexp[j] = sexp[j-1]*tmp%P;for(int j=0; j<dgr; j+=(i<<1)){for(llong *k=ret+j,*kk=sexp; k<ret+i+j; k++,kk++){llong y = k[i]*(*kk)%P;k[i] = (*k)-y<0 ? (*k)-y+P : (*k)-y;(*k) = (*k)+y>=P ? (*k)+y-P : (*k)+y;}}}if(coe==-1){llong tmp = mulinv(dgr);for(int i=0; i<dgr; i++) ret[i] = ret[i]*tmp%P;}}void polymul(int dgr,llong poly1[],llong poly2[],llong ret[]){ntt((dgr<<1),1,poly1,tmp1); ntt((dgr<<1),1,poly2,tmp2);for(int i=0; i<(dgr<<1); i++) ret[i] = tmp1[i]*tmp2[i]%P;ntt((dgr<<1),-1,ret,ret);}void polyinv(int dgr,llong poly[],llong ret[]){for(int i=0; i<(dgr<<1); i++) ret[i] = tmp3[i] = tmp4[i] = tmp5[i] = 0ll;ret[0] = mulinv(poly[0]);for(int i=1; i<=(dgr>>1); i<<=1){for(int j=0; j<(i<<1); j++) tmp3[j] = poly[j];ntt((i<<2),1,tmp3,tmp4); ntt((i<<2),1,ret,tmp5);for(int j=0; j<(i<<2); j++) tmp3[j] = tmp4[j]*tmp5[j]%P*tmp5[j]%P;ntt((i<<2),-1,tmp3,tmp4);for(int j=0; j<(i<<1); j++) ret[j] = (ret[j]+ret[j]-tmp4[j]+P)%P;}}void polyder(int dgr,llong poly[],llong ret[]){for(int i=0; i<dgr-1; i++) ret[i] = poly[i+1]*(i+1)%P;ret[dgr-1] = 0ll;}void polyint(int dgr,llong poly[],llong ret[]){for(int i=1; i<dgr; i++) ret[i] = poly[i-1]*mulinv(i)%P;ret[0] = 0ll;}void polyln(int dgr,llong poly[],llong ret[]){for(int i=0; i<(dgr<<1); i++) ret[i] = tmp6[i] = tmp7[i] = tmp8[i] = 0ll;polyder(dgr,poly,tmp6);polyinv(dgr,poly,tmp7);polymul(dgr,tmp6,tmp7,tmp8);polyint(dgr,tmp8,ret);}void polyexp(int dgr,llong poly[],llong ret[]){for(int i=0; i<(dgr<<1); i++) ret[i] = tmp9[i] = tmp10[i] = 0ll;ret[0] = 1ll;for(int i=1; i<=(dgr>>1); i<<=1){polyln((i<<1),ret,tmp9);for(int j=0; j<(i<<1); j++) tmp9[j] = (-tmp9[j]+poly[j]+P)%P; tmp9[0]++;polymul((i<<2),ret,tmp9,tmp10);for(int j=0; j<(i<<1); j++) ret[j] = tmp10[j];}}
}
int permu[N+3];
int a[N+3];
int dgr[N+3];
bool vis[N+3];
vector<int> s[N+3];
llong f[N+3],expf[N+3];
llong fact[N+3];
int n;int gcd(int x,int y) {return y==0?x:gcd(y,x%y);}int main()
{fact[0] = 1ll; for(int i=1; i<=N; i++) fact[i] = fact[i-1]*i%P;scanf("%d",&n);for(int i=1; i<=n; i++) scanf("%d",&permu[i]);for(int i=1; i<=n; i++){if(vis[i]) continue;int len = 1; vis[i] = true;for(int j=permu[i]; j!=i; j=permu[j]){len++;vis[j] = true;}a[len]++;}for(int i=1; i<=n; i++){int g = gcd(i,n),l = i/gcd(i,n);s[l].push_back(g);}llong ans = 1ll;for(int i=1; i<=n; i++){if(a[i]==0) continue;int dgr = FFT::getdgr(a[i]);for(int j=0; j<s[i].size(); j++){if(s[i][j]<dgr){f[s[i][j]] = (f[s[i][j]]+mulinv(s[i][j])*quickpow(i,s[i][j]-1))%P;}}FFT::polyexp(dgr,f,expf);ans = ans*expf[a[i]]%P*fact[a[i]]%P;for(int j=0; j<(dgr<<1); j++) f[j] = expf[j] = 0ll;}printf("%lld\n",ans);return 0;
}

这篇关于Luogu P4709 信息传递 (群论、生成函数、多项式指数函数)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711826

相关文章

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分