多变量微积分笔记3——二元函数的极值

2024-02-14 21:08

本文主要是介绍多变量微积分笔记3——二元函数的极值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是极值

  极值不同于最值,极值的定义如下:

  若函数f(x)在x0的一个邻域D有定义,且对D中除x0的所有点,都有f(x)<f(x0),则称f(x0)是函数f(x)的一个极大值。同理,若对D的所有点,都有f(x)>f(x0),则称f(x0)是函数f(x)的一个极小 值。极大值和极小值也称为局部最大值和局部最小值。

  如果用图形解释,那么:当我们在极大值点上,向任何方向移动输入点都会减小函数值;当我们在极小值点上,向任何方向移动输入点都会增加函数值。

  极值的概念来自数学应用中的最大最小值问题。根据极值定律,定义在一个有界闭区域上的每一个连续函数都必定达到它的最大值和最小值,问题在于要确定它在哪些点处达到最大值或最小值。极值点只能在函数不可导的点或导数为零的点上取得。

  极值定律:当函数f(x)在闭区间[a,b]上是连续函数时,存在c属于[a,b],d属于[a,b],有f(c)≤f(x)≤f(d),x∈[a,b]成立。

  可以看出,极值是一个局部概念,我们可以说极大值是函数在某个区间内的最大值。一个函数可能有多个极值,如下图所示,B,C,D,E均为极值点:

  

  对于一元函数,求得极值和最值较为容易,但是对于多元函数,情况就复杂的多。这里主要介绍如何求解二元函数的极值(对于更多元函数的极值,在后续章节学习梯度后将继续阐述),在此之前还需要弄清楚另外两个点——临界点和鞍点。

临界点(驻点)

  对于一个多元函数f,如果有一个点满足f所有自变量的偏导都同时为0,那么这个点被称为f的临界点,也称为驻点。

  对于二元函数f(x, y)来说,临界点(x0, y0)满足:

 

  示例:求f(x, y) = x2 – 2xy + 3y2 + 2x – 2y的临界点

 

  f(x)只有一个临界点(-1, 0)

 

  由于极值点只能在函数不可导的点或导数为零的点上取得,所以临界点成为求解极值点的关键。现在的问题是,上面的叙述反过来并不成立,也就是临界点未必是极值点;另一个问题是,当临界点是极值点时,如何判断极值是极大值还是极小值?

  在此之前先来认识一下鞍点。

鞍点

  既不是极大值点也不是极小值点的临界点,叫做鞍点。

  鞍点这词来自于不定二次型z=y2-x2的图形,像马鞍:x-轴方向往上曲,在y-轴方向往下曲。

  在z=y2-x2鞍点处,沿y轴方向向两边移动,函数值会减小;沿x轴方向向两边移动,函数值会增大:

求得极值点

  现在回到最初的问题——如何寻找极值。

通过作图寻找

  最直观的办法是通过作图寻找,在图中很容易找到极值:

  很明显,凹凸处就是极值。

  等高线图同样容易寻找极值:

  在等高线图中,极大值和极小值看起来是一样的,需要读出函数的数值:极小值周围,函数值向外递增;极大值周围,函数值向外递减。

通过二阶偏导判定

  虽然作图法最直观,但二元函数通常很难作图,更多元的函数甚至无法作图,幸而数学家们找到了一种更为通用的办法,这就是里利用二阶导数判断。

  f(x, y)的一个临界点是(x0, y0),即fx(x0, y0) = 0 && fy(x0, y0) = 0,f的二阶导数是fxx,fxy,fyy现在,

  该临界点有如下结论:

示例

示例1

  求函数f(x,y) = x3 – 3xy + y3 的极值

  1)       计算偏导

 

  2)       计算临界点

 

  临界点是(0, 0)或(1, 1)

  3)       计算二阶偏导

 

  4)       判断临界点类型

  在(0, 0)处,AC – B2 = -9 < 0,(0, 0)是鞍点;

  在(1, 1)处,AC – B2 = 27 > 0,A = 6 > 0,(1, 1)是极小值点,此处的极值是f(1, 1) = -1

 

示例2

  做一个2体积单位的长方体有盖木箱,长宽高怎样取值才能最省料?

  设木箱的长宽分别为x和y,则高是4/xy,用料的面积

 

  计算偏导:

  找到临界点:

 

  此时先不要急于寻找极值点,极值点可能是局部最小或最大点,我们要寻找的是全局最小点。最值可能出现在几个点上,临界点、函数边界或无穷远处。在用料面积A来说,如果x或y趋近于∞,则xy→∞,A→∞;如果x→0或y→0,则(2/x)→∞或(2/y)→∞,A→∞。因为我们确定,在体积一定的情况下一定存在最小用料,所以临界点是极小点,同时也使全局极小点,即最小点。从这个例子中也看出,在体积一定的长方体中,以正方体的表面积最小。

 


   作者:我是8位的

  出处:http://www.cnblogs.com/bigmonkey

  本文以学习、研究和分享为主,如需转载,请联系本人,标明作者和出处,非商业用途! 

  

这篇关于多变量微积分笔记3——二元函数的极值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/709589

相关文章

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最