C++古老算法介绍

2024-02-14 20:04
文章标签 算法 c++ 介绍 古老

本文主要是介绍C++古老算法介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本篇文章我们来介绍一下常用算法

1.贪心算法

贪心算法(Greedy Algorithm)是一种解决问题的策略,它在每一步都做出当前看来最优的选择,而不考虑全局最优解。(局部最优解得到整体最优解)贪心算法通常适用于满足"贪心选择性质"和"最优子结构性质"的问题。

贪心算法使用条件:

贪心算法适用的条件包括两个性质:贪心选择性质和最优子结构性质。

  1. 贪心选择性质(Greedy Choice Property):通过每一步的局部最优选择,能够得到全局最优解。也就是说,在每一步选择中,都做出当前看起来最好的选择,而不考虑对后续步骤的影响。

  2. 最优子结构性质(Optimal Substructure):问题的最优解包含了子问题的最优解。换句话说,通过求解子问题的最优解,可以推导出原问题的最优解。

当一个问题满足这两个性质时,可以考虑使用贪心算法来求解。但需要注意,并非所有问题都满足这两个性质,所以不能盲目地应用贪心算法。

代码实例:

以下是一个使用贪心算法解决找零钱问题的示例(经典):

假设有面额为1元、5元、10元、25元的硬币,现在要找零给定金额的钱数,求最少需要多少个硬币。

#include <iostream>
#include <vector>std::vector<int> greedyCoinChange(int amount, std::vector<int>& coins) {std::vector<int> result;for (int i = coins.size() - 1; i >= 0; i--) {while (amount >= coins[i]) { // 尽可能多地选择当前面额的硬币result.push_back(coins[i]);amount -= coins[i];}}return result;
}int main() {int amount = 48;std::vector<int> coins = {25, 10, 5, 1};std::cout << "Amount: " << amount << std::endl;std::cout << "Coins used: ";std::vector<int> result = greedyCoinChange(amount, coins);for (int coin : result) {std::cout << coin << " ";}std::cout << std::endl;return 0;
}

这段代码中,我们从最大面额的硬币开始选择,如果当前金额仍然大于等于当前面额的硬币,则选择该硬币,并减去相应的金额。重复这个过程直到金额变为0。

贪心算法在此问题中能够得到最优解,因为每次选择都是局部最优的。但需要注意的是,贪心算法并不适用于所有问题,有些问题可能需要动态规划等其他方法来求解。在使用贪心算法时,需要仔细分析问题性质,并确保它满足贪心选择性质和最优子结构性质。

2.递归算法

递归算法是一种通过调用自身来解决问题的算法。它将一个大问题分解为一个或多个相同或类似的子问题,并通过逐级求解子问题来达到最终解决整个问题的目的。

递归算法通常包含以下两个重要组成部分:

  1. 基本情况(Base Case):确定递归算法何时停止,不再进行递归调用。基本情况应该是最简单的情况,无需进一步递归求解即可得到结果。

  2. 递归调用(Recursive Call):在算法中使用相同的函数来解决规模更小的子问题。通过反复调用自身,将大问题转化为规模较小且相同性质的子问题。

在编写递归算法时,需要注意以下几点:

  • 确保每次递归调用都能使问题规模减小,否则可能会导致无限循环。
  • 保证基本情况被正确处理,确保最终可以终止递归过程。
  • 尽量避免重复计算和重复工作,利用已经计算过的结果进行缓存或剪枝操作。

斐波那契数列

#include <iostream>int fibonacci(int n) {if (n <= 0) {return -1; // 错误情况,返回负数表示错误} else if (n == 1 || n == 2) {return 1; // 基本情况,斐波那契数列的第一项和第二项为1} else {return fibonacci(n - 1) + fibonacci(n - 2); // 递归调用求解前两个斐波那契数之和}
}int main() {int n = 6;int result = fibonacci(n);std::cout << "第 " << n << " 个斐波那契数是:" << result << std::endl;return 0;
}

回溯法:

回溯法(Backtracking)是一种解决问题的算法思想,通常用于求解在给定约束条件下的所有可能解。它通过尝试所有可能的选择,并逐步构建出候选解,如果当前构建的部分无法满足问题的限制条件,就会回溯到上一个状态进行其他选择。

八皇后问题 

#include <iostream>
#include <vector>using namespace std;bool isValid(vector<int>& board, int row, int col) {for (int i = 0; i < row; ++i) {if (board[i] == col || abs(board[i] - col) == abs(i - row)) {return false;}}return true;
}void backtrack(vector<vector<string>>& res, vector<int>& board, int row, int n) {if (row == n) {vector<string> solution(n, string(n, '.'));for (int i = 0; i < n; ++i) {solution[i][board[i]] = 'Q';}res.push_back(solution);} else {for (int col = 0; col < n; ++col) {if (isValid(board, row, col)) {board[row] = col;backtrack(res, board, row + 1, n);board[row] = -1;}}}
}vector<vector<string>> solveNQueens(int n) {vector<vector<string>> res;vector<int> board(n, -1);backtrack(res, board, 0, n);return res;
}int main() {int n = 4;vector<vector<string>> solutions = solveNQueens(n);for (const auto& solution : solutions) {for (const auto& row : solution) {cout << row << endl;}cout << "----------------" << endl;}return 0;
}

在这个示例中,我们通过回溯法解决了八皇后问题。solveNQueens 函数返回了一个二维数组,其中每个元素代表一种合法的八皇后布局。

回溯算法的关键在于 isValidbacktrack 函数。isValid 函数用于判断当前位置是否可以放置皇后,而 backtrack 函数用于递归地尝试所有可能的选择,并生成符合要求的解。

总结:本篇文章讲了一些常用的数据结构算法    如贪心算法 回溯法 递归算法 等   掌握,每一个算法的精髓 才行 根据不同的场景使用不同的算法 能达到意想不到的效果

好了 本篇文章就到这里 在这里小编想向大家推荐一个课程 课程质量杠杠的

https://xxetb.xetslk.com/s/2PjJ3T

这篇关于C++古老算法介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/709466

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�