Hive的Join连接、谓词下推

2024-02-14 17:28
文章标签 连接 join hive 谓词 下推

本文主要是介绍Hive的Join连接、谓词下推,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

  Hive-3.1.2版本支持6种join语法。分别是:inner join(内连接)、left join(左连接)、right join(右连接)、full outer join(全外连接)、left semi join(左半开连接)、cross join(交叉连接,也叫做笛卡尔乘积)。

一、Hive的Join连接

数据准备: 有两张表studentInfo、studentScore

create table if not exists studentInfo
(user_id   int comment '学生id',name      string comment '学生姓名',gender    string comment '学生性别'
)comment '学生信息表';
INSERT overwrite table studentInfo
VALUES (1, '吱吱', '男'),(2, '格格', '男'),(3, '纷纷', '女'),(4, '嘻嘻', '女'),(5, '安娜', '女');create table if not exists studentScore
(user_id   int comment '学生id',subject   string comment '学科',score     int comment '分数'
)comment '学生分数表';INSERT overwrite table studentScore
VALUES (1, '生物', 78),(2, '生物', 88),(3, '生物', 34),(4, '数学', 98),(null, '数学', 64);

1.1 inner join 内连接

       内连接是最常见的一种连接,其中inner可以省略:inner join == join ; 只有进行连接的两个表中都存在与连接条件相匹配的数据才会被留下来。

selectt1.user_id,t1.name,t1.gender,t2.subject,t2.score
from studentInfo t1inner join studentScore t2 on t1.user_id = t2.user_id

1.2 left join 左外连接

    join时以左表的全部数据为准,右边与之关联;左表数据全部返回,右表关联上的显示返回,关联不上的显示null返回。

selectt1.user_id,t1.name,t1.gender,t2.user_id,t2.subject,t2.score
from studentInfo t1left  join studentScore t2 on t1.user_id = t2.user_id;

1.3 right join 右外连接

       join时以右表的全部数据为准,左边与之关联;右表数据全部返回,左表关联上的显示返回,关联不上的显示null返回。

selectt2.user_id,t2.subject,t2.score,t1.user_id,t1.name,t1.gender
from studentInfo t1right  join studentScore t2on t1.user_id = t2.user_id;

1.4 full join 满外连接

  包含左、右两个表的全部行,不管另外一边的表中是否存在与它们匹配的行;在功能上等价于对这两个数据集合分别进行左外连接和右外连接,然后再使用消去重复行的操作将上述两个结果集合并为一个结果集。full join 本质等价于 left join  union   right join; 

selectt1.user_id,t1.name,t1.gender,t2.user_id,t2.subject,t2.score
from studentInfo t1full  join studentScore t2on t1.user_id = t2.user_id;

ps:full join 本质等价于 left join union  right join; 

selectt1.user_id,t1.name,t1.gender,t2.user_id,t2.subject,t2.score
from studentInfo t1full  join studentScore t2on t1.user_id = t2.user_id;----- 等价于下述代码selectt1.user_id as t1_user_id ,t1.name,t1.gender,t2.user_id as  t2_user_id,t2.subject,t2.score
from studentInfo t1left  join studentScore t2on t1.user_id = t2.user_id
union
selectt1.user_id as t1_user_id ,t1.name,t1.gender,t2.user_id as t2_user_id,t2.subject,t2.score
from studentInfo t1right  join studentScore t2on t1.user_id = t2.user_id

1.5 多表连接

      注意:连接 n 个表,至少需要 n-1 个连接条件。例如:连接三个表,至少需要两个连接
条件。 join on使用的key有几组就会被转化为几个MR任务,使用相 同的key来连接,则只会被转化为1个MR任务。

1.6 cross join 交叉连接

    交叉连接cross join,将会返回被连接的两个表的笛卡尔积,返回结果的行数等于两个表行数的乘积 N*M。对于大表来说,cross join慎用(笛卡尔积可能会造成数据膨胀

    在SQL标准中定义的cross join就是无条件的inner join。返回两个表的笛卡尔积,无需指定关联 键。
  在HiveSQL语法中,cross join 后面可以跟where子句进行过滤,或者on条件过滤。

---举例:
selectt1.user_id as t1_user_id ,t1.name,t1.gender,t2.user_id as t2_user_id,t2.subject,t2.score
from studentInfo t1, studentScore t2--- 等价于:
selectt1.user_id as t1_user_id ,t1.name,t1.gender,t2.user_id as t2_user_id,t2.subject,t2.score
from studentInfo t1join studentScore t2---等价于:
selectt1.user_id as t1_user_id ,t1.name,t1.gender,t2.user_id as t2_user_id,t2.subject,t2.score
from studentInfo t1cross  join studentScore t2

1.7 join on和where条件区别

       两者之间的区别见文章:
Hive中left join 中的where 和 on的区别-CSDN博客文章浏览阅读1.2k次,点赞21次,收藏23次。Hive中left join 中的where 和 on的区别https://blog.csdn.net/SHWAITME/article/details/135892183?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522170780016016800197016026%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=170780016016800197016026&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-1-135892183-null-null.nonecase&utm_term=where&spm=1018.2226.3001.4450

1.8 join中不能有null

  • group by字段为null,会导致结果不正确(null值也会参与group by 分组)

group by column1
  • join字段为null会导致结果不正确(例如:下述 t2.b字段是null值)
t1 left join t2 on t1.a=t2.a and t1.b=t2.b 

1.9 join操作导致数据膨胀

select *
from a 
left join b 
on a.id = b.id 

     如果主表a的id是唯一的,副表b的id有重复值,非唯一,那当on a.id = b.id 时,就会导致数据膨胀(一条变多条)。因此两表或多表join的时候,需保证join的字段唯一性,否则会出现一对多的数据膨胀现象。

二、Hive的谓词下推

2.1 谓词下推概念

      在不影响结果的情况下,尽量将过滤条件提前执行。谓词下推后,过滤条件在map端执行,减少了map端的输出,降低了数据在集群上传输的量,提升任务性能。

     在hive生成的物理执行计划中,有一个配置项用于管理谓词下推是否开启。

set hive.optimize.ppd=true; 默认是true

   疑问:如果hive谓词下推的功能与join同时存在,那下推功能可以在哪些场景下生效

2.2 谓词下推场景分析

     数据准备:以上述两张表studentInfo、studentScore为例

    查看谓词下推是否开启:set hive.optimize.ppd;

(1) inner join 内连接

  • 对左表where过滤
 explain
selectt1.user_id as t1_user_id,t1.name,t1.gender,t2.user_id as t2_user_id,t2.subject,t2.score
from studentInfo t1inner join studentScore t2 on t1.user_id = t2.user_id
where t1.user_id >2

     explain查看执行计划,在对t2表进行scan后,优先对t1表进行filter,过滤t1.user_id >2,即谓词下推生效。

  • 对右表where过滤
 explain
selectt1.user_id as t1_user_id,t1.name,t1.gender,t2.user_id as t2_user_id,t2.subject,t2.score
from studentInfo t1inner join studentScore t2 on t1.user_id = t2.user_id
where t2.user_id is not null

    explain查看执行计划,在对t2表进行scan后,优先进行filter,过滤t2.user_id is not null,即谓词下推生效。

 

  • 对左表on过滤
explain
selectt1.user_id as t1_user_id,t1.name,t1.gender,t2.user_id as t2_user_id,t2.subject,t2.score
from studentInfo t1inner join studentScore t2 on t1.user_id = t2.user_id and t1.user_id >2

    explain查看执行计划,在对t2表进行scan后,优先对t1表进行filter,过滤t1.user_id >2,即谓词下推生效。

  • 对右表on过滤
 explain
selectt1.user_id as t1_user_id,t1.name,t1.gender,t2.user_id as t2_user_id,t2.subject,t2.score
from studentInfo t1inner join studentScore t2 on t1.user_id = t2.user_id and t2.user_id is not null

    explain查看执行计划,在对t2表进行scan后,优先进行filter,过滤t2.user_id is not null,即谓词下推生效。 

 (2) left join(right join 同理)

  • 对左表where过滤
explain
selectt1.user_id,t1.name,t1.gender,t2.user_id,t2.subject,t2.score
from studentInfo t1left  join studentScore t2on t1.user_id = t2.user_id
where t1.user_id >2;

    explain查看执行计划,在对t2表进行scan后,优先对t1表进行filter,过滤t1.user_id >2,即谓词下推生效。

  • 对右表where过滤
explain
selectt1.user_id,t1.name,t1.gender,t2.user_id,t2.subject,t2.score
from studentInfo t1left  join studentScore t2on t1.user_id = t2.user_id
where t2.user_id is not null;

     explain查看执行计划,在对t2表进行scan后,优先进行filter,过滤t2.user_id is not null,即谓词下推生效。 

 

  • 对左表on过滤
explain 
selectt1.user_id as t1_user_id,t1.name,t1.gender,t2.user_id as t2_user_id,t2.subject,t2.score
from studentInfo t1left join studentScore t2on t1.user_id = t2.user_id and t1.user_id >2

      explain查看执行计划,在对t2表进行scan后,在对t1表未进行filter,即谓词下推不生效

 

  • 对右表on过滤
explain
selectt1.user_id as t1_user_id,t1.name,t1.gender,t2.user_id as t2_user_id,t2.subject,t2.score
from studentInfo t1left join studentScore t2on t1.user_id = t2.user_id and t2.user_id is not null;

      explain查看执行计划,在对t2表进行scan后,优先进行filter,过滤t2.user_id is not null,即谓词下推生效。 

 (3) full join

  • 对左表where过滤
explain 
selectt1.user_id as t1_user_id,t1.name,t1.gender,t2.user_id as t2_user_id,t2.subject,t2.score
from studentInfo t1full  join studentScore t2on t1.user_id = t2.user_id
where  t1.user_id >2 ;

     explain查看执行计划,在对t2表进行scan后,优先对t1表进行filter,过滤t1.user_id >2,即谓词下推生效。

 

  • 对右表where过滤
explain
selectt1.user_id as t1_user_id,t1.name,t1.gender,t2.user_id as t2_user_id,t2.subject,t2.score
from studentInfo t1full  join studentScore t2on t1.user_id = t2.user_id
where  t2.user_id is not null

     explain查看执行计划,在对t1 表进行scan后,优先进行filter,过滤t2.user_id is not null,即谓词下推生效。 

  • 对左表on过滤
explain
selectt1.user_id as t1_user_id,t1.name,t1.gender,t2.user_id as t2_user_id,t2.subject,t2.score
from studentInfo t1full  join studentScore t2on t1.user_id = t2.user_id and t1.user_id >2;

       explain查看执行计划,在对t1表进行scan后,未对t1表进行filter,即谓词下推不生效

  • 对右表on过滤
explain
selectt1.user_id as t1_user_id,t1.name,t1.gender,t2.user_id as t2_user_id,t2.subject,t2.score
from studentInfo t1full  join studentScore t2on t1.user_id = t2.user_id and t2.user_id is not null;

     explain查看执行计划,在对t1表进行scan后,未对t2表未进行filter,即谓词下推不生效

总结:

hive中谓词下推的各种场景下的生效情况如下表:

inner joinleft joinright joinfull join
左表右表左表右表左表右表左表右表
where条件
on条件××××

三、Hive Join的数据倾斜

          待补充

参考文章:

Hive的Join操作_hive join-CSDN博客

《Hive用户指南》- Hive的连接join与排序_hive 对主表排序后连接查询能保持顺序吗-CSDN博客

Hive 中的join和谓词下推_hive谓词下推-CSDN博客

这篇关于Hive的Join连接、谓词下推的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/709137

相关文章

W外链微信推广短连接怎么做?

制作微信推广链接的难点分析 一、内容创作难度 制作微信推广链接时,首先需要创作有吸引力的内容。这不仅要求内容本身有趣、有价值,还要能够激起人们的分享欲望。对于许多企业和个人来说,尤其是那些缺乏创意和写作能力的人来说,这是制作微信推广链接的一大难点。 二、精准定位难度 微信用户群体庞大,不同用户的需求和兴趣各异。因此,制作推广链接时需要精准定位目标受众,以便更有效地吸引他们点击并分享链接

Java 连接Sql sever 2008

Java 连接Sql sever 2008 /Sql sever 2008 R2 import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.Statement; public class TestJDBC

实例:如何统计当前主机的连接状态和连接数

统计当前主机的连接状态和连接数 在 Linux 中,可使用 ss 命令来查看主机的网络连接状态。以下是统计当前主机连接状态和连接主机数量的具体操作。 1. 统计当前主机的连接状态 使用 ss 命令结合 grep、cut、sort 和 uniq 命令来统计当前主机的 TCP 连接状态。 ss -nta | grep -v '^State' | cut -d " " -f 1 | sort |

【Go】go连接clickhouse使用TCP协议

离开你是傻是对是错 是看破是软弱 这结果是爱是恨或者是什么 如果是种解脱 怎么会还有眷恋在我心窝 那么爱你为什么                      🎵 黄品源/莫文蔚《那么爱你为什么》 package mainimport ("context""fmt""log""time""github.com/ClickHouse/clickhouse-go/v2")func main(

nginx长连接的问题

转自: http://www.360doc.com/content/12/1108/17/1073512_246644318.shtml

NGINX轻松管理10万长连接 --- 基于2GB内存的CentOS 6.5 x86-64

转自:http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=190176&id=4234854 一 前言 当管理大量连接时,特别是只有少量活跃连接,NGINX有比较好的CPU和RAM利用率,如今是多终端保持在线的时代,更能让NGINX发挥这个优点。本文做一个简单测试,NGINX在一个普通PC虚拟机上维护100k的HTTP

TL-Tomcat中长连接的底层源码原理实现

长连接:浏览器告诉tomcat不要将请求关掉。  如果不是长连接,tomcat响应后会告诉浏览器把这个连接关掉。    tomcat中有一个缓冲区  如果发送大批量数据后 又不处理  那么会堆积缓冲区 后面的请求会越来越慢。

DBeaver 连接 MySQL 报错 Public Key Retrieval is not allowed

DBeaver 连接 MySQL 报错 Public Key Retrieval is not allowed 文章目录 DBeaver 连接 MySQL 报错 Public Key Retrieval is not allowed问题解决办法 问题 使用 DBeaver 连接 MySQL 数据库的时候, 一直报错下面的错误 Public Key Retrieval is

Github连接方式

打开Linux中git的配置文件: /home/username/git/MyRepository/.git/config [core]repositoryformatversion = 0filemode = truebare = falselogallrefupdates = true[remote "origin"]fetch = +refs/heads/*:refs/remot

贝壳面试:什么是回表?什么是索引下推?

尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50+)中,最近有小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格,遇到很多很重要的面试题: 1.谈谈你对MySQL 索引下推 的认识? 2.在MySQL中,索引下推 是如何实现的?请简述其工作原理。 3、说说什么是 回表,什么是 索引下推 ? 最近有小伙伴在面试 贝壳、soul,又遇到了相关的