本文主要是介绍算法快学笔记(十四):图的最小生成树算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
1. 介绍
最小生成树的应用场景很广,例如电信公司需要将9个村庄进行网络连接,村庄间的距离都不相同,怎么连接才能达到成本最小了?村庄结构图如下:
V0-V10分别表示村庄,节点间的权重代表距离,连接所有节点的总距离最小,就可以让成本更低。
定义:把构造连通整个图的最小代价生成树称为最小生成树。
2. 相关算法
普利姆与克鲁斯卡尔算法都是贪心算法
2.1 普利姆(Prim)算法
2.1.1 原理
普里姆算法(Prim算法):该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。
算法的基本步骤如下:
-
输入:一个加权连通图,其中顶点集合为V,边集合为E;
-
初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;
-
重复下列操作,直到Vnew = V:
- 在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
- 将v加入集合Vnew中,将<u, v>边加入集合Enew中;
- 输出:使用集合Vnew和Enew来描述所得到的最小生成树。
算法实例推理步骤如下:
2.1.2 代码实现
基于邻接矩阵存储结构用Python实现的代码如下:
# -*- coding:utf-8 -*-
# @Author:sunaihua
"""
普里姆算法(Prim算法):最小生成树算法
本实现基于邻接矩阵存储结构
"""
MAX_VALUE = 65536# 图结构的矩阵存储
graph = [[0, 10, MAX_VALUE, MAX_VALUE, MAX_VALUE, 11, MAX_VALUE, MAX_VALUE, MAX_VALUE],[10, 0, 18, MAX_VALUE, MAX_VALUE, MAX_VALUE, 16, MAX_VALUE, 12],[MAX_VALUE, MAX_VALUE, 0, 22, MAX_VALUE, MAX_VALUE, MAX_VALUE, MAX_VALUE, 8],[MAX_VALUE, MAX_VALUE, 22, 0, 20, MAX_VALUE, MAX_VALUE, 16, 21],[MAX_VALUE, MAX_VALUE, MAX_VALUE, 20, 0, 26, MAX_VALUE, 7, MAX_VALUE],[11, MAX_VALUE, MAX_VALUE, MAX_VALUE, 26, 0, 17, MAX_VALUE, MAX_VALUE],[MAX_VALUE, 16, MAX_VALUE, MAX_VALUE, MAX_VALUE, 17, 0, 19, MAX_VALUE],[MAX_VALUE, MAX_VALUE, MAX_VALUE, 16, 7, MAX_VALUE, 19, 0, MAX_VALUE],[MAX_VALUE, 12, 8, 21, MAX_VALUE, MAX_VALUE, MAX_VALUE, MAX_VALUE, 0],
]start_node = 0 # 0节点为初始节点new_v_array = [] #最小生成树的vertex数组
edge_value_array = [] #最小生成树的权值数组
new_e_array = [] #最小生成树的edge数组def prim():v_number = len(graph)latest_edge_target = -1new_v_array.append(start_node)while True:if len(new_v_array) < v_number:smallest_value = MAX_VALUEfor n_index in new_v_array:cur_net = graph[n_index]for index, value in enumerate(cur_net): # 选出new_v_array中所有边的最小值if index not in new_v_array:if (value != 0) and (value <= smallest_value):smallest_value = valuelatest_edge_target = indexlatest_edge_src = n_indexelse:continueprint(new_v_array, n_index, index, value, smallest_value, latest_edge_target)if latest_edge_target not in new_v_array:print("merge:", latest_edge_src, latest_edge_target, smallest_value)new_e_array.append([latest_edge_src, latest_edge_target])new_v_array.append(latest_edge_target)edge_value_array.append(smallest_value)else:breakprint("V seq:", new_v_array)print("E seq:", new_e_array)print("sum value:", sum(edge_value_array))if __name__ == '__main__':prim()
2.1.3 结果
程序的部分输出结果为:
('V seq:', [0, 1, 5, 8, 2, 6, 7, 4, 3])
('E seq:', [[0, 1], [0, 5], [1, 8], [8, 2], [1, 6], [6, 7], [7, 4], [7, 3]])
('sum value:', 99)
连接文章开头部分的最小值为99.
关于时间复杂度问题:
如果记顶点数v,边数e,则采用邻接矩阵的算法复杂度为:
O = V^2
采用邻接表的时间复杂度为:O(elog2v)
2.2 克鲁斯卡尔(Kruskal)算法
2.2.1 原理
Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表。
算法简单描述如下:
1).记Graph中有v个顶点,e个边
2).新建图Graph_new,Graph_new中拥有原图中相同的e个顶点,但没有边
3).将原图Graph中所有e个边按权值从小到大排序
4).循环:从权值最小的边开始遍历每条边 直至图Graph中所有的节点都在同一个连通分量中,如果 这条边连接的两个节点于图Graph_new中不在同一个连通分量中 则添加这条边到图Graph_new中
推理过程如下:
图例描述:
首先第一步,我们有一张图Graph,有若干点和边
将所有的边的长度排序,用排序的结果作为我们选择边的依据。这里再次体现了贪心算法的思想。资源排序,对局部最优的资源进行选择,排序完成后,我们率先选择了边AD。这样我们的图就变成了下图
在剩下的变中寻找。我们找到了CE。这里边的权重也是5
依次类推我们找到了6,7,7,即DF,AB,BE。
下面继续选择, BC或者EF尽管现在长度为8的边是最小的未选择的边。但是现在他们已经连通了(对于BC可以通过CE,EB来连接,类似的EF可以通过EB,BA,AD,DF来接连)。所以不需要选择他们。类似的BD也已经连通了(这里上图的连通线用红色表示了)。
最后就剩下EG和FG了。当然我们选择了EG。最后成功的图如下所示:
2.1.2 实现
# -*- coding:utf-8 -*-
# @Author:sunaihua"""
Kruskal:最小生成树算法
本实现基于邻接矩阵存储结构
"""
import copyMAX_VALUE = 65536# 图结构的矩阵存储
graph = [[0, 10, MAX_VALUE, MAX_VALUE, MAX_VALUE, 11, MAX_VALUE, MAX_VALUE, MAX_VALUE],[10, 0, 18, MAX_VALUE, MAX_VALUE, MAX_VALUE, 16, MAX_VALUE, 12],[MAX_VALUE, MAX_VALUE, 0, 22, MAX_VALUE, MAX_VALUE, MAX_VALUE, MAX_VALUE, 8],[MAX_VALUE, MAX_VALUE, 22, 0, 20, MAX_VALUE, MAX_VALUE, 16, 21],[MAX_VALUE, MAX_VALUE, MAX_VALUE, 20, 0, 26, MAX_VALUE, 7, MAX_VALUE],[11, MAX_VALUE, MAX_VALUE, MAX_VALUE, 26, 0, 17, MAX_VALUE, MAX_VALUE],[MAX_VALUE, 16, MAX_VALUE, MAX_VALUE, MAX_VALUE, 17, 0, 19, MAX_VALUE],[MAX_VALUE, MAX_VALUE, MAX_VALUE, 16, 7, MAX_VALUE, 19, 0, MAX_VALUE],[MAX_VALUE, 12, 8, 21, MAX_VALUE, MAX_VALUE, MAX_VALUE, MAX_VALUE, 0],
]new_v_array = [] # 最小生成树的vertex数组
edge_value_array = [] # 最小生成树的权值数组
new_e_array = [] # 最小生成树的edge数组class Vertex:def __init__(self, distance, x, y):self.distance = distanceself.x = xself.y = ydef __eq__(self, other):if isinstance(other, self.__class__):return self.x == other.y and self.y == other.xelse:return Falsedef __hash__(self):m1 = min(self.x, self.y)m2 = max(self.x, self.y)return hash(("[%s,%s,%s]" % (m1, m2, self.distance)))def __repr__(self):return "[%s,%s,%s]" % (self.x, self.y, self.distance)def find(parent, f):while parent[f] > 0:f = parent[f]return fdef kruskal():edge_with_distance = set()for i, v_net in enumerate(graph):for j, k in enumerate(v_net):if i != j and k != MAX_VALUE:edge_with_distance.add(Vertex(k, i, j))# 根据distance排序,并将利用set特性将相同的节点去掉sorted_graph = sorted(edge_with_distance, key=lambda x: x.distance, reverse=False)parent = [0 for _ in range(len(graph))]for ve in sorted_graph:if len(new_v_array) == (len(graph)):breakn = find(parent, ve.x)m = find(parent, ve.y)# 如果n==m,则表明存在循环节点。if n != m:parent[n] = mprint("parent2:", parent)new_v_array.append(ve)new_e_array.append((ve.x, ve.y))edge_value_array.append(ve.distance)print("V seq:", new_v_array)print("E seq:", new_e_array)print("sum value:", sum(edge_value_array))if __name__ == '__main__':kruskal()
2.1.3 结果
输出结果与Prim结果相同
3. 总结
Prim算法以顶点为起点,逐步寻找顶点上最小权值的边来构建最小生成树,就像参加世博会,先从第一个入口进,然后寻找所在场馆周边最感兴趣的馆,然后再用相同的办法查看下一个。。。。。
Kruskal算法是基于权值最小的边来构建生成树,该思路参加世博园就是先去最想参观的馆,再参观次想参观的馆,最终参观完所有馆。
关于算法效率,Kruskal针对边来展开,边少时效率非常高,是和用于稀疏图。Prim适用于边比较多的场景。
这篇关于算法快学笔记(十四):图的最小生成树算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!