以程序的方式操纵NTFS的文件权限

2024-02-14 06:58
文章标签 程序 方式 权限 ntfs 操纵

本文主要是介绍以程序的方式操纵NTFS的文件权限,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Windows NT/2K/XP版本的操作系统都支持NTFS格式的文件系统,这是一个有安全性质的文件系统,你可以通过Windows的资源管理器来设置对每个目录和文件的用户访问权限。这里我就不对NTFS的安全性进行讲述了,我默认你对NTFS的文件目录的安全设置有了一定的了解。在这里,我将向你介绍使用Windows的API函数来操纵NTFS的文件权限。

一、       理论和术语

在Windows NT/2K?XP下的对象,不一定是文件系统,还有其它的一些对象,如:进程、命名管道、打印机、网络共享、或是注册表等等,都可以设置用户访问权限。在Windows系统中,其是用一个安全描述符(Security Descriptors)的结构来保存其权限的设置信息,简称为SD,其在Windows SDK中的结构名是“SECURITY_DESCRIPTOR”,这是包括了安全设置信息的结构体。一个安全描述符包含以下信息:

一个安全标识符(Security identifiers),其标识了该信息是哪个对象的,也就是用于记录安全对象的ID。简称为:SID。

一个DACL(Discretionary Access Control List),其指出了允许和拒绝某用户或用户组的存取控制列表。 当一个进程需要访问安全对象,系统就会检查DACL来决定进程的访问权。如果一个对象没有DACL,那么就是说这个对象是任何人都可以拥有完全的访问权限。

一个SACL(System Access Control List),其指出了在该对象上的一组存取方式(如,读、写、运行等)的存取控制权限细节的列表。

还有其自身的一些控制位。

DACL和SACL构成了整个存取控制列表Access Control List,简称ACL,ACL中的每一项,我们叫做ACE(Access Control Entry),ACL中的每一个ACE。

我们的程序不用直接维护SD这个结构,这个结构由系统维护。我们只用使用Windows 提供的相关的API函数来取得并设置SD中的信息就行了。不过这些API函数只有Windows NT/2K/XP才支持。

安全对象Securable Object是拥有SD的Windows的对象。所有的被命名的Windows的对象都是安全对象。一些没有命名的对象是安全对象,如:进程和线程,也有安全描述符SD。在对大多数的创建安全对象的操作中都需要你传递一个SD的参数,如:CreateFile和CreateProcess函数。另外,Windows还提供了一系列有关安全对象的安全信息的存取函数,以供你取得对象上的安全设置,或修改对象上的安全设置。如:GetNamedSecurityInfo, SetNamedSecurityInfo,GetSecurityInfo, SetSecurityInfo。

下图说明了,安全对象和DACL以及访问者之间的联系(来源于MSDN)。注意,DACL表中的每个ACE的顺序是有意义的,如果前面的Allow(或denied)ACE通过了,那么,系统就不会检查后面的ACE了。

以程序的方式操纵NTFS的文件权限 - 技术文档 - VC文档 - 平台SDK - 立华软件园 - yyimen - yyimen的博客

系统会按照顺序依次检查所有的ACE规则,如下面的条件满足,则退出:

1、 如果一个Access-Denied的ACE明显地拒绝了请求者。

2、 如果某Access-Allowed的ACE明显地同意了请求者。

3、 全部的ACE都检查完了,但是没有一条ACE明显地允许或是拒绝请求者,那么系统将使用默认值,拒绝请求者的访问。

更多的理论和描述,请参看MSDN。

二、       实践与例程

1、  例程一:创建一个有权限设置的目录

#include <windows.h>

void main(void)

{

  SECURITY_ATTRIBUTES sa;  //和文件有关的安全结构

  SECURITY_DESCRIPTOR sd;  //声明一个SD

  BYTE aclBuffer[1024];

  PACL pacl=(PACL)&aclBuffer; //声明一个ACL,长度是1024

  BYTE sidBuffer[100];

  PSID psid=(PSID) &sidBuffer;  //声明一个SID,长度是100

  DWORD sidBufferSize = 100;

  char domainBuffer[80];

  DWORD domainBufferSize = 80;

  SID_NAME_USE snu;

  HANDLE file;

  //初始化一个SD

  InitializeSecurityDescriptor(&sd, SECURITY_DESCRIPTOR_REVISION);

  //初始化一个ACL

  InitializeAcl(pacl, 1024, ACL_REVISION);

  //查找一个用户hchen,并取该用户的SID

  LookupAccountName(0, "hchen", psid,

      &sidBufferSize, domainBuffer,

      &domainBufferSize, &snu);

  //设置该用户的Access-Allowed的ACE,其权限为“所有权限”

AddAccessAllowedAce(pacl, ACL_REVISION, GENERIC_ALL, psid);

//把ACL设置到SD中

  SetSecurityDescriptorDacl(&sd, TRUE, pacl, FALSE);

  //把SD放到文件安全结构SA中

  sa.nLength = sizeof(SECURITY_ATTRIBUTES);

  sa.bInheritHandle = FALSE;

  sa.lpSecurityDescriptor = &sd;

  //创建文件

  file = CreateFile("c:\\testfile",

    0, 0, &sa, CREATE_NEW, FILE_ATTRIBUTE_NORMAL, 0);

  CloseHandle(file);

}

这个例子我是从网上找来的,改了改。其中使用到的关键的API函数,我都把其加粗了。从程序中我们可以看到,我们先初始化了一个SD和一个ACL,然后调用LookupAccountName取得用户的SID,然后通过这个SID,对ACL中加入一个有允许访问权限的ACE,然后再把整个ACL设置到SD中。最后,组织文件安全描述的SA结构,并调用CreateFile创建文件。如果你的操作系统是NTFS,那么,你可以看到你创建出来的文件的安全属性的样子:

以程序的方式操纵NTFS的文件权限 - 技术文档 - VC文档 - 平台SDK - 立华软件园 - yyimen - yyimen的博客

这个程序旨在说明如何生成一个新的SD和ACL的用法,其有四个地方的不足和不清:

1、 对于ACL和SID的声明采用了硬编码的方式指定其长度。

2、 对于API函数,没有出错处理。

3、 没有说明如何修改已有文件或目录的安全设置。

4、 没有说明安全设置的继承性。

对于这些我将在下个例程中讲述。

2、  例程二、为目录增加一个安全设置项

在我把这个例程序例出来以前,请允许我多说一下。

1、  对于文件、目录、命令管道,我们不一定要使用GetNamedSecurityInfo和SetNamedSecurityInfo函数,我们可以使用其专用函数GetFileSecurity和SetFileSecurity函数来取得或设置文件对象的SD,以设置其访问权限。需要使用这两个函数并不容易,正如前面我们所说的,我们还需要处理SD参数,要处理SD,就需要处理DACL和ACE,以及用户的相关SID,于是,一系统列的函数就被这两个函数带出来了。

2、  对于上一个例子中的使用硬编码指定SID的处理方法是。调用LookupAccountName函数时,先把SID,Domain名的参数传为空NULL,于是LookupAccountName会返回用户的SID的长度和Domain名的长度,于是你可以根据这个长度分配内存,然后再次调用LookupAccountName函数。于是就可以达到到态分配内存的效果。对于ACL也一样。

3、  对于给文件的ACL中增加一个ACE条目,一般的做法是先取出文件上的ACL,逐条取出ACE,和现需要增加的ACE比较,如果有冲突,则删除已有的ACE,把新加的ACE添置到最后。这里的最后,应该是非继承而来的ACE的最后。关于ACL继承,NTFS中,你可以设置文件和目录是否继承于其父目录的设置。在程序中同样可以设置。

还是请看例程,这个程序比较长,来源于MSDN,我做了一点点修改,并把自己的理解加在注释中,所以,请注意代码中的注释:

#include <windows.h>

#include <tchar.h>

#include <stdio.h>

//使用Windows的HeapAlloc函数进行动态内存分配

#define myheapalloc(x) (HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, x))

#define myheapfree(x) (HeapFree(GetProcessHeap(), 0, x))

typedef BOOL (WINAPI *SetSecurityDescriptorControlFnPtr)(

  IN PSECURITY_DESCRIPTOR pSecurityDescriptor,

  IN SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest,

  IN SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet);

typedef BOOL (WINAPI *AddAccessAllowedAceExFnPtr)(

 PACL pAcl,

 DWORD dwAceRevision,

 DWORD AceFlags,

 DWORD AccessMask,

 PSID pSid

);

BOOL AddAccessRights(TCHAR *lpszFileName, TCHAR *lpszAccountName,

   DWORD dwAccessMask) {

  // 声明SID变量

  SID_NAME_USE  snuType;

  // 声明和LookupAccountName相关的变量(注意,全为0,要在程序中动态分配)

  TCHAR *    szDomain    = NULL;

  DWORD     cbDomain    = 0;

  LPVOID     pUserSID    = NULL;

  DWORD     cbUserSID   = 0;

  // 和文件相关的安全描述符 SD 的变量

  PSECURITY_DESCRIPTOR pFileSD = NULL;   // 结构变量

  DWORD     cbFileSD    = 0;    // SD的size

  // 一个新的SD的变量,用于构造新的ACL(把已有的ACL和需要新加的ACL整合起来)

  SECURITY_DESCRIPTOR newSD;

  // 和ACL 相关的变量

  PACL      pACL      = NULL;

  BOOL      fDaclPresent;

  BOOL      fDaclDefaulted;

  ACL_SIZE_INFORMATION AclInfo;

  // 一个新的 ACL 变量

  PACL      pNewACL    = NULL; //结构指针变量

  DWORD     cbNewACL    = 0;   //ACL的size

  // 一个临时使用的 ACE 变量

  LPVOID     pTempAce    = NULL;

  UINT      CurrentAceIndex = 0; //ACE在ACL中的位置

  UINT      newAceIndex = 0; //新添的ACE在ACL中的位置

  //API函数的返回值,假设所有的函数都返回失败。

  BOOL      fResult;

  BOOL      fAPISuccess;

  SECURITY_INFORMATION secInfo = DACL_SECURITY_INFORMATION;

  // 下面的两个函数是新的API函数,仅在Windows 2000以上版本的操作系统支持。

  // 在此将从Advapi32.dll文件中动态载入。如果你使用VC++ 6.0编译程序,而且你想

  // 使用这两个函数的静态链接。则请为你的编译加上:/D_WIN32_WINNT=0x0500

  // 的编译参数。并且确保你的SDK的头文件和lib文件是最新的。

  SetSecurityDescriptorControlFnPtr _SetSecurityDescriptorControl = NULL;

  AddAccessAllowedAceExFnPtr _AddAccessAllowedAceEx = NULL;

  __try {

   //

   // STEP 1: 通过用户名取得SID

   //   在这一步中LookupAccountName函数被调用了两次,第一次是取出所需要

   // 的内存的大小,然后,进行内存分配。第二次调用才是取得了用户的帐户信息。

   // LookupAccountName同样可以取得域用户或是用户组的信息。(请参看MSDN)

   //

   fAPISuccess = LookupAccountName(NULL, lpszAccountName,

      pUserSID, &cbUserSID, szDomain, &cbDomain, &snuType);

   // 以上调用API会失败,失败原因是内存不足。并把所需要的内存大小传出。

   // 下面是处理非内存不足的错误。

   if (fAPISuccess)

     __leave;

   else if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) {

     _tprintf(TEXT("LookupAccountName() failed. Error %d\n"),

        GetLastError());

     __leave;

   }

   pUserSID = myheapalloc(cbUserSID);

   if (!pUserSID) {

     _tprintf(TEXT("HeapAlloc() failed. Error %d\n"), GetLastError());

     __leave;

   }

   szDomain = (TCHAR *) myheapalloc(cbDomain * sizeof(TCHAR));

   if (!szDomain) {

     _tprintf(TEXT("HeapAlloc() failed. Error %d\n"), GetLastError());

     __leave;

   }

   fAPISuccess = LookupAccountName(NULL, lpszAccountName,

      pUserSID, &cbUserSID, szDomain, &cbDomain, &snuType);

   if (!fAPISuccess) {

     _tprintf(TEXT("LookupAccountName() failed. Error %d\n"),

        GetLastError());

     __leave;

   }

   //

   // STEP 2: 取得文件(目录)相关的安全描述符SD

   //   使用GetFileSecurity函数取得一份文件SD的拷贝,同样,这个函数也

    // 是被调用两次,第一次同样是取SD的内存长度。注意,SD有两种格式:自相关的

    // (self-relative)和 完全的(absolute),GetFileSecurity只能取到“自

    // 相关的”,而SetFileSecurity则需要完全的。这就是为什么需要一个新的SD,

    // 而不是直接在GetFileSecurity返回的SD上进行修改。因为“自相关的”信息

    // 是不完整的。

   fAPISuccess = GetFileSecurity(lpszFileName,

      secInfo, pFileSD, 0, &cbFileSD);

   // 以上调用API会失败,失败原因是内存不足。并把所需要的内存大小传出。

   // 下面是处理非内存不足的错误。

   if (fAPISuccess)

     __leave;

   else if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) {

     _tprintf(TEXT("GetFileSecurity() failed. Error %d\n"),

        GetLastError());

     __leave;

   }

   pFileSD = myheapalloc(cbFileSD);

   if (!pFileSD) {

     _tprintf(TEXT("HeapAlloc() failed. Error %d\n"), GetLastError());

     __leave;

   }

   fAPISuccess = GetFileSecurity(lpszFileName,

      secInfo, pFileSD, cbFileSD, &cbFileSD);

   if (!fAPISuccess) {

     _tprintf(TEXT("GetFileSecurity() failed. Error %d\n"),

        GetLastError());

     __leave;

   }

   //

   // STEP 3: 初始化一个新的SD

   //

   if (!InitializeSecurityDescriptor(&newSD,

      SECURITY_DESCRIPTOR_REVISION)) {

     _tprintf(TEXT("InitializeSecurityDescriptor() failed.")

      TEXT("Error %d\n"), GetLastError());

     __leave;

   }

   //

   // STEP 4: 从GetFileSecurity 返回的SD中取DACL

   //

   if (!GetSecurityDescriptorDacl(pFileSD, &fDaclPresent, &pACL,

      &fDaclDefaulted)) {

     _tprintf(TEXT("GetSecurityDescriptorDacl() failed. Error %d\n"),

        GetLastError());

     __leave;

   }

   //

   // STEP 5: 取 DACL的内存size

   //   GetAclInformation可以提供DACL的内存大小。只传入一个类型为

   // ACL_SIZE_INFORMATION的structure的参数,需DACL的信息,是为了

   // 方便我们遍历其中的ACE。

   AclInfo.AceCount = 0; // Assume NULL DACL.

   AclInfo.AclBytesFree = 0;

   AclInfo.AclBytesInUse = sizeof(ACL);

   if (pACL == NULL)

     fDaclPresent = FALSE;

   // 如果DACL不为空,则取其信息。(大多数情况下“自关联”的DACL为空)

   if (fDaclPresent) {      

     if (!GetAclInformation(pACL, &AclInfo,

        sizeof(ACL_SIZE_INFORMATION), AclSizeInformation)) {

      _tprintf(TEXT("GetAclInformation() failed. Error %d\n"),

         GetLastError());

      __leave;

     }

   }

   //

   // STEP 6: 计算新的ACL的size

   //  计算的公式是:原有的DACL的size加上需要添加的一个ACE的size,以

   // 及加上一个和ACE相关的SID的size,最后减去两个字节以获得精确的大小。

   cbNewACL = AclInfo.AclBytesInUse + sizeof(ACCESS_ALLOWED_ACE)

      + GetLengthSid(pUserSID) - sizeof(DWORD);

   //

   // STEP 7: 为新的ACL分配内存

   //

   pNewACL = (PACL) myheapalloc(cbNewACL);

   if (!pNewACL) {

     _tprintf(TEXT("HeapAlloc() failed. Error %d\n"), GetLastError());

     __leave;

   }

   //

   // STEP 8: 初始化新的ACL结构

   //

   if (!InitializeAcl(pNewACL, cbNewACL, ACL_REVISION2)) {

     _tprintf(TEXT("InitializeAcl() failed. Error %d\n"),

        GetLastError());

     __leave;

   }

   //

   // STEP 9 如果文件(目录) DACL 有数据,拷贝其中的ACE到新的DACL中

   //

   //   下面的代码假设首先检查指定文件(目录)是否存在的DACL,如果有的话,

   // 那么就拷贝所有的ACE到新的DACL结构中,我们可以看到其遍历的方法是采用

   // ACL_SIZE_INFORMATION结构中的AceCount成员来完成的。在这个循环中,

   // 会按照默认的ACE的顺序来进行拷贝(ACE在ACL中的顺序是很关键的),在拷

   // 贝过程中,先拷贝非继承的ACE(我们知道ACE会从上层目录中继承下来)

   //

   newAceIndex = 0;

   if (fDaclPresent && AclInfo.AceCount) {

     for (CurrentAceIndex = 0;

        CurrentAceIndex < AclInfo.AceCount;

        CurrentAceIndex++) {

      //

      // STEP 10: 从DACL中取ACE

      //

      if (!GetAce(pACL, CurrentAceIndex, &pTempAce)) {

        _tprintf(TEXT("GetAce() failed. Error %d\n"),

           GetLastError());

        __leave;

      }

      //

      // STEP 11: 检查是否是非继承的ACE

      //   如果当前的ACE是一个从父目录继承来的ACE,那么就退出循环。

      // 因为,继承的ACE总是在非继承的ACE之后,而我们所要添加的ACE

      // 应该在已有的非继承的ACE之后,所有的继承的ACE之前。退出循环

      // 正是为了要添加一个新的ACE到新的DACL中,这后,我们再把继承的

      // ACE拷贝到新的DACL中。

      //

      if (((ACCESS_ALLOWED_ACE *)pTempAce)->Header.AceFlags

        & INHERITED_ACE)

        break;

      //

      // STEP 12: 检查要拷贝的ACE的SID是否和需要加入的ACE的SID一样,

      // 如果一样,那么就应该废掉已存在的ACE,也就是说,同一个用户的存取

      // 权限的设置的ACE,在DACL中应该唯一。这在里,跳过对同一用户已设置

      // 了的ACE,仅是拷贝其它用户的ACE。

      //

      if (EqualSid(pUserSID,

        &(((ACCESS_ALLOWED_ACE *)pTempAce)->SidStart)))

        continue;

      //

      // STEP 13: 把ACE加入到新的DACL中

      //  下面的代码中,注意 AddAce 函数的第三个参数,这个参数的意思是

      // ACL中的索引值,意为要把ACE加到某索引位置之后,参数MAXDWORD的

       // 意思是确保当前的ACE是被加入到最后的位置。

      //

      if (!AddAce(pNewACL, ACL_REVISION, MAXDWORD, pTempAce,

         ((PACE_HEADER) pTempAce)->AceSize)) {

        _tprintf(TEXT("AddAce() failed. Error %d\n"),

           GetLastError());

        __leave;

      }

      newAceIndex++;

     }

   }

  //

  // STEP 14: 把一个 access-allowed 的ACE 加入到新的DACL中

  //   前面的循环拷贝了所有的非继承且SID为其它用户的ACE,退出循环的第一件事

  // 就是加入我们指定的ACE。请注意首先先动态装载了一个AddAccessAllowedAceEx

  // 的API函数,如果装载不成功,就调用AddAccessAllowedAce函数。前一个函数仅

  // 在Windows 2000以后的版本支持,NT则没有,我们为了使用新版本的函数,我们首

  // 先先检查一下当前系统中可不可以装载这个函数,如果可以则就使用。使用动态链接

  // 比使用静态链接的好处是,程序运行时不会因为没有这个API函数而报错。

  //

  // Ex版的函数多出了一个参数AceFlag(第三人参数),用这个参数我们可以来设置一

  // 个叫ACE_HEADER的结构,以便让我们所设置的ACE可以被其子目录所继承下去,而

  // AddAccessAllowedAce函数不能定制这个参数,在AddAccessAllowedAce函数

  // 中,其会把ACE_HEADER这个结构设置成非继承的。

  //

   _AddAccessAllowedAceEx = (AddAccessAllowedAceExFnPtr)

      GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")),

      "AddAccessAllowedAceEx");

   if (_AddAccessAllowedAceEx) {

      if (!_AddAccessAllowedAceEx(pNewACL, ACL_REVISION2,

       CONTAINER_INHERIT_ACE | OBJECT_INHERIT_ACE ,

        dwAccessMask, pUserSID)) {

       _tprintf(TEXT("AddAccessAllowedAceEx() failed. Error %d\n"),

          GetLastError());

       __leave;

     }

   }else{

     if (!AddAccessAllowedAce(pNewACL, ACL_REVISION2,

        dwAccessMask, pUserSID)) {

       _tprintf(TEXT("AddAccessAllowedAce() failed. Error %d\n"),

          GetLastError());

       __leave;

     }

   }

   //

   // STEP 15: 按照已存在的ACE的顺序拷贝从父目录继承而来的ACE

   //

   if (fDaclPresent && AclInfo.AceCount) {

     for (;

       CurrentAceIndex < AclInfo.AceCount;

       CurrentAceIndex++) {

      //

      // STEP 16: 从文件(目录)的DACL中继续取ACE

      //

      if (!GetAce(pACL, CurrentAceIndex, &pTempAce)) {

        _tprintf(TEXT("GetAce() failed. Error %d\n"),

           GetLastError());

        __leave;

      }

      //

      // STEP 17: 把ACE加入到新的DACL中

      //

      if (!AddAce(pNewACL, ACL_REVISION, MAXDWORD, pTempAce,

         ((PACE_HEADER) pTempAce)->AceSize)) {

        _tprintf(TEXT("AddAce() failed. Error %d\n"),

           GetLastError());

        __leave;

      }

     }

   }

   //

   // STEP 18: 把新的ACL设置到新的SD中

   //

   if (!SetSecurityDescriptorDacl(&newSD, TRUE, pNewACL,

      FALSE)) {

     _tprintf(TEXT("SetSecurityDescriptorDacl() failed. Error %d\n"),

        GetLastError());

     __leave;

   }

   //

   // STEP 19: 把老的SD中的控制标记再拷贝到新的SD中,我们使用的是一个叫

   // SetSecurityDescriptorControl() 的API函数,这个函数同样只存在于

   // Windows 2000以后的版本中,所以我们还是要动态地把其从advapi32.dll

   // 中载入,如果系统不支持这个函数,那就不拷贝老的SD的控制标记了。

   //

   _SetSecurityDescriptorControl =(SetSecurityDescriptorControlFnPtr)

      GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")),

      "SetSecurityDescriptorControl");

   if (_SetSecurityDescriptorControl) {

     SECURITY_DESCRIPTOR_CONTROL controlBitsOfInterest = 0;

     SECURITY_DESCRIPTOR_CONTROL controlBitsToSet = 0;

     SECURITY_DESCRIPTOR_CONTROL oldControlBits = 0;

     DWORD dwRevision = 0;

     if (!GetSecurityDescriptorControl(pFileSD, &oldControlBits,

      &dwRevision)) {

      _tprintf(TEXT("GetSecurityDescriptorControl() failed.")

         TEXT("Error %d\n"), GetLastError());

      __leave;

     }

     if (oldControlBits & SE_DACL_AUTO_INHERITED) {

      controlBitsOfInterest =

        SE_DACL_AUTO_INHERIT_REQ |

        SE_DACL_AUTO_INHERITED ;

      controlBitsToSet = controlBitsOfInterest;

     }

     else if (oldControlBits & SE_DACL_PROTECTED) {

      controlBitsOfInterest = SE_DACL_PROTECTED;

      controlBitsToSet = controlBitsOfInterest;

     }    

     if (controlBitsOfInterest) {

      if (!_SetSecurityDescriptorControl(&newSD,

        controlBitsOfInterest,

        controlBitsToSet)) {

        _tprintf(TEXT("SetSecurityDescriptorControl() failed.")

           TEXT("Error %d\n"), GetLastError());

        __leave;

      }

     }

   }

   //

   // STEP 20: 把新的SD设置设置到文件的安全属性中(千山万水啊,终于到了)

   //

   if (!SetFileSecurity(lpszFileName, secInfo,

      &newSD)) {

     _tprintf(TEXT("SetFileSecurity() failed. Error %d\n"),

        GetLastError());

     __leave;

   }

   fResult = TRUE;

  } __finally {

   //

   // STEP 21: 释放已分配的内存,以免Memory Leak

   //

   if (pUserSID) myheapfree(pUserSID);

   if (szDomain) myheapfree(szDomain);

   if (pFileSD) myheapfree(pFileSD);

   if (pNewACL) myheapfree(pNewACL);

  }

  return fResult;

}

--------------------------------------------------------------------------------

int _tmain(int argc, TCHAR *argv[]) {

  if (argc < 3) {

   _tprintf(TEXT("usage: \"%s\" <FileName> <AccountName>\n"), argv[0]);

   return 1;

  }

  // argv[1] – 文件(目录)名

  // argv[2] – 用户(组)名

  // GENERIC_ALL表示所有的权限,其是一系列的NTFS权限的或

  //   NTFS的文件权限很细,还请参看MSDN。

  if (!AddAccessRights(argv[1], argv[2], GENERIC_ALL)) {

   _tprintf(TEXT("AddAccessRights() failed.\n"));

   return 1;

  }

  else {

   _tprintf(TEXT("AddAccessRights() succeeded.\n"));

   return 0;

  }

}

三、       一些相关的API函数

通过以上的示例,相信你已知道如何操作NTFS文件安全属性了,还有一些API函数需要介绍一下。

1、 如果你要加入一个Access-Denied 的ACE,你可以使用AddAccessDeniedAce函数

2、 如果你要删除一个ACE,你可以使用DeleteAce函数

3、 如果你要检查你所设置的ACL是否合法,你可以使用IsValidAcl函数,同样,对于SD的合法也有一个叫IsValidSecurityDescriptor的函数


这篇关于以程序的方式操纵NTFS的文件权限的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/707812

相关文章

Jsoncpp的安装与使用方式

《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

Linux磁盘分区、格式化和挂载方式

《Linux磁盘分区、格式化和挂载方式》本文详细介绍了Linux系统中磁盘分区、格式化和挂载的基本操作步骤和命令,包括MBR和GPT分区表的区别、fdisk和gdisk命令的使用、常见的文件系统格式以... 目录一、磁盘分区表分类二、fdisk命令创建分区1、交互式的命令2、分区主分区3、创建扩展分区,然后

Linux中chmod权限设置方式

《Linux中chmod权限设置方式》本文介绍了Linux系统中文件和目录权限的设置方法,包括chmod、chown和chgrp命令的使用,以及权限模式和符号模式的详细说明,通过这些命令,用户可以灵活... 目录设置基本权限命令:chmod1、权限介绍2、chmod命令常见用法和示例3、文件权限详解4、ch

Java中的密码加密方式

《Java中的密码加密方式》文章介绍了Java中使用MD5算法对密码进行加密的方法,以及如何通过加盐和多重加密来提高密码的安全性,MD5是一种不可逆的哈希算法,适合用于存储密码,因为其输出的摘要长度固... 目录Java的密码加密方式密码加密一般的应用方式是总结Java的密码加密方式密码加密【这里采用的

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

Mycat搭建分库分表方式

《Mycat搭建分库分表方式》文章介绍了如何使用分库分表架构来解决单表数据量过大带来的性能和存储容量限制的问题,通过在一对主从复制节点上配置数据源,并使用分片算法将数据分配到不同的数据库表中,可以有效... 目录分库分表解决的问题分库分表架构添加数据验证结果 总结分库分表解决的问题单表数据量过大带来的性能

SpringBoot项目引入token设置方式

《SpringBoot项目引入token设置方式》本文详细介绍了JWT(JSONWebToken)的基本概念、结构、应用场景以及工作原理,通过动手实践,展示了如何在SpringBoot项目中实现JWT... 目录一. 先了解熟悉JWT(jsON Web Token)1. JSON Web Token是什么鬼

在C#中合并和解析相对路径方式

《在C#中合并和解析相对路径方式》Path类提供了几个用于操作文件路径的静态方法,其中包括Combine方法和GetFullPath方法,Combine方法将两个路径合并在一起,但不会解析包含相对元素... 目录C#合并和解析相对路径System.IO.Path类幸运的是总结C#合并和解析相对路径对于 C

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初