新冠疫情数据统计 蓝桥杯楼赛第二十三期(不考虑自动化处理缺省值)

本文主要是介绍新冠疫情数据统计 蓝桥杯楼赛第二十三期(不考虑自动化处理缺省值),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原题链接

import csv
import json
import country_converter as cocodef main():cc = coco.CountryConverter()Confirmed = {"Africa": 0, "Asia": 0, "Oceania": 0,"Europe": 0, "America": 0, "Others": 0, "Total": 0}Deaths = {"Africa": 0, "Asia": 0, "Oceania": 0,"Europe": 0, "America": 0, "Others": 0, "Total": 0}Recovered = {"Africa": 0, "Asia": 0, "Oceania": 0,"Europe": 0, "America": 0, "Others": 0, "Total": 0}Active = {"Africa": 0, "Asia": 0, "Oceania": 0,"Europe": 0, "America": 0, "Others": 0, "Total": 0}country_list = []ls = []data = "楼赛第三题\okcases_country.csv"with open(data, 'r') as f:reader = csv.reader(f)for row in reader:if row[0] == "Country_Region":passelse:country_name = row[0]country_list.append(country_name)continent = cc.convert(names = country_list, to = 'continent', not_found= "Others")with open(data, 'r') as f:reader = csv.reader(f)    rows = [row for row in reader]for a in range(len(continent)):#print(a)#print(int(float(rows[a+1][4])))#print(int(float(rows[a+1][5])))#print(int(float(rows[a+1][6])))#print(int(float(rows[a+1][7])))if continent[a] == "Asia":Confirmed[continent[a]] = Confirmed.get(continent[a] , 0) + int(float(rows[a+1][4]))Deaths[continent[a]] = Deaths.get(continent[a] , 0) + int(float(rows[a+1][5]))Recovered[continent[a]] = Recovered.get(continent[a] , 0) + int(float(rows[a+1][6]))Active[continent[a]] = Active.get(continent[a] , 0) + int(float(rows[a+1][7]))elif continent[a] == "Europe":Confirmed[continent[a]] = Confirmed.get(continent[a] , 0) + int(float(rows[a+1][4]))Deaths[continent[a]] = Deaths.get(continent[a] , 0) + int(float(rows[a+1][5]))Recovered[continent[a]] = Recovered.get(continent[a] , 0) + int(float(rows[a+1][6]))Active[continent[a]] = Active.get(continent[a] , 0) + int(float(rows[a+1][7]))elif continent[a] == "Africa":Confirmed[continent[a]] = Confirmed.get(continent[a] , 0) + int(float(rows[a+1][4]))Deaths[continent[a]] = Deaths.get(continent[a] , 0) + int(float(rows[a+1][5]))Recovered[continent[a]] = Recovered.get(continent[a] , 0) + int(float(rows[a+1][6]))Active[continent[a]] = Active.get(continent[a] , 0) + int(float(rows[a+1][7]))elif continent[a] == "America":Confirmed[continent[a]] = Confirmed.get(continent[a] , 0) + int(float(rows[a+1][4]))Deaths[continent[a]] = Deaths.get(continent[a] , 0) + int(float(rows[a+1][5]))Recovered[continent[a]] = Recovered.get(continent[a] , 0) + int(float(rows[a+1][6]))Active[continent[a]] = Active.get(continent[a] , 0) + int(float(rows[a+1][7]))elif continent[a] == "Oceania":Confirmed[continent[a]] = Confirmed.get(continent[a] , 0) + int(float(rows[a+1][4]))Deaths[continent[a]] = Deaths.get(continent[a] , 0) + int(float(rows[a+1][5]))Recovered[continent[a]] = Recovered.get(continent[a] , 0) + int(float(rows[a+1][6]))Active[continent[a]] = Active.get(continent[a] , 0) + int(float(rows[a+1][7]))elif continent[a] == "Others":Confirmed[continent[a]] = Confirmed.get(continent[a] , 0) + int(float(rows[a+1][4]))Deaths[continent[a]] = Deaths.get(continent[a] , 0) + int(float(rows[a+1][5]))Recovered[continent[a]] = Recovered.get(continent[a] , 0) + int(float(rows[a+1][6]))Active[continent[a]] = Active.get(continent[a] , 0) + int(float(rows[a+1][7]))Confirmed["Total"] = Confirmed["Africa"] + Confirmed["Asia"] + Confirmed["Oceania"] + Confirmed["Europe"] + Confirmed["America"] +Confirmed["Others"]Active["Total"] = Active["Africa"] + Active["Asia"] + Active["Oceania"] + Active["Europe"] + Active["America"] +Active["Others"]Deaths["Total"] = Deaths["Africa"] + Deaths["Asia"] + Deaths["Oceania"] + Deaths["Europe"] + Deaths["America"] +Deaths["Others"]Recovered["Total"] = Recovered["Africa"] + Recovered["Asia"] + Recovered["Oceania"] + Recovered["Europe"] + Recovered["America"] +Recovered["Others"]results = {"Confirmed": Confirmed,"Deaths": Deaths,"Recovered": Recovered,"Active": Active,}print(results)    return json.dumps(results, indent=2)       
main()
#一个学生物的编程爱好者#

这是在不考虑自动化处理缺省值的情况下的答案,至于使用numpy和pandas的自动化处理的版本近期将会更新。

这篇关于新冠疫情数据统计 蓝桥杯楼赛第二十三期(不考虑自动化处理缺省值)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/706341

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Jenkins中自动化部署Spring Boot项目的全过程

《Jenkins中自动化部署SpringBoot项目的全过程》:本文主要介绍如何使用Jenkins从Git仓库拉取SpringBoot项目并进行自动化部署,通过配置Jenkins任务,实现项目的... 目录准备工作启动 Jenkins配置 Jenkins创建及配置任务源码管理构建触发器构建构建后操作构建任务

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines