新冠疫情数据统计 蓝桥杯楼赛第二十三期

2024-02-13 18:48

本文主要是介绍新冠疫情数据统计 蓝桥杯楼赛第二十三期,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

新冠疫情数据统计

介绍

2020 年,新冠疫情肆掠全球。约翰·霍普金斯大学 跟踪了全球病例数据,包括总病例数、COVID-19 传播速度以及全球爆发情况。我们拿到了截止于某日的疫情数据,希望通过 Python 统计出我们需要的疫情指标。

知识点

  • Python 数据处理

目标

补充 count(data) 函数中的 TODO 部分,使其得到我们需要的结果:

  • 整理指定 data 数据文件,以 JSON 数据返回世界各大洲的的汇总数据。
  • 数据集中仅存在国家和地区名称,不存在大洲数据,需要自行解决。表格中的每个国家/地区都需要划分到实际所在大洲。
  • 需要删除明显统计错误的数据(即:确诊人数、死亡人数、康复人数、现有人数不匹配),缺失人数统计数据使用 0 填充。其余情况无需处理。
def count(data):"""TODO"""results = Nonereturn results

样例

首先,打开终端,使用以下命令将数据文件下载至环境中:

cd /home/shiyanlou/Code
wget https://labfile.oss.aliyuncs.com/courses/2799/cases_country.csv

部分数据截图如下,其中 ISO3 为国家/地区标准代码:
在这里插入图片描述

count(data) 函数最终返回数据格式示例如下(数据非真实情况):

results = {"Confirmed": {"Africa": 1203024, "Asia": 6420215, "Oceania": 25346, "Europe": 3311213, "America": 1023402, "Others": 13443, "Total": 15440234}, "Deaths": {"Africa": 22222, "Asia": 133126, "Oceania": 556, "Europe": 111431, "America": 51155, "Others": 502, "Total": 616513}, "Recovered": {"Africa": 130522, "Asia": 5163035, "Oceania": 21212, "Europe": 1112545, "America": 214106, "Others": 1424, "Total": 13131033 }, "Active": {"Africa": 244262, "Asia": 1124052, "Oceania": 4252, "Europe": 1201515, "America": 121345, "Others": 3455, "Total": 3612602}}

返回数据中,ConfirmedDeathsRecoveredActive 分别表示:确诊人数、死亡人数、康复人数、现有人数。而 AfricaAsiaOceaniaEuropeAmericaOthers 分别表示:非洲、亚洲、大洋洲、欧洲、美洲(北美洲和南美洲)和其他的相应人数,Others 其他为非国家/地区的数据项。Total 表示数据总和。所有数值数据为 Int 类型

要求

  • 题目需使用 Python 3.6 完成,可以使用标准库和第三方库。如果你的函数使用了第三方库,提交检测前,务必在线上环境中安装相应库。
  • 使用第三方库时,必须使用 python3.6 -m pip install <package_name> 命令安装,保证相应库安装在 Python 3.6 环境中。
  • 函数传入 data 为字符串类型,为数据文件的相对路径。
  • 函数返回 JSON 数据(字符串类型),示例如上,无顺序要求。
  • 需要将函数 count(data) 保存到 covid.py 文件中,并将该文件放置在 /home/shiyanlou/Code 路径下方。
  • covid.py 文件中仅保留函数,不要添加测试或执行代码,避免检测时出错。
  • 线上环境调试代码时,请使用 python3.6 covid.py 命令调用 Python 3.6。

提示

调试代码时,请使用 python3.6 covid.py 命令调用 Python 3.6。

提示

  • country-converter 库提供了转换大洲数据的方法,你可以通过官方提供的 示例学习。线上环境中安装 country-converter 的命令为:python3.6 -m pip install setuptools && python3.6 -m pip install country-converter

这篇关于新冠疫情数据统计 蓝桥杯楼赛第二十三期的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/706339

相关文章

MySQL数据目录迁移的完整过程

《MySQL数据目录迁移的完整过程》文章详细介绍了将MySQL数据目录迁移到新硬盘的整个过程,包括新硬盘挂载、创建新的数据目录、迁移数据(推荐使用两遍rsync方案)、修改MySQL配置文件和重启验证... 目录1,新硬盘挂载(如果有的话)2,创建新的 mysql 数据目录3,迁移 MySQL 数据(推荐两

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E

使用C#导出Excel数据并保存多种格式的完整示例

《使用C#导出Excel数据并保存多种格式的完整示例》在现代企业信息化管理中,Excel已经成为最常用的数据存储和分析工具,从员工信息表、销售数据报表到财务分析表,几乎所有部门都离不开Excel,本文... 目录引言1. 安装 Spire.XLS2. 创建工作簿和填充数据3. 保存为不同格式4. 效果展示5

Python多任务爬虫实现爬取图片和GDP数据

《Python多任务爬虫实现爬取图片和GDP数据》本文主要介绍了基于FastAPI开发Web站点的方法,包括搭建Web服务器、处理图片资源、实现多任务爬虫和数据可视化,同时,还简要介绍了Python爬... 目录一. 基于FastAPI之Web站点开发1. 基于FastAPI搭建Web服务器2. Web服务