hdu 1402 A * B Problem Plus[【FFT】

2024-02-13 15:38
文章标签 problem plus hdu fft 1402

本文主要是介绍hdu 1402 A * B Problem Plus[【FFT】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 这是一道FFT模板题,然而菜鸟还是WA好多发。。。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<map>
#include<string>
#include<queue>
#include<vector>
#include<list>
#include<bitset>
//#pragma comment(linker,"/STACK:1024000000,1024000000")
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define N 200005
const double PI = acos(-1.0);
struct complex
{double r,i;complex(double _r = 0,double _i = 0){r = _r; i = _i;}complex operator +(const complex &b){return complex(r+b.r,i+b.i);}complex operator -(const complex &b){return complex(r-b.r,i-b.i);}complex operator *(const complex &b){return complex(r*b.r-i*b.i,r*b.i+i*b.r);}
};
void change(complex y[],int len)
{int i,j,k;for(i = 1, j = len/2;i < len-1;i++){if(i < j)swap(y[i],y[j]);k = len/2;while( j >= k){j -= k;k /= 2;}if(j < k)j += k;}
}
void fft(complex y[],int len,int on)
{change(y,len);for(int h = 2;h <= len;h <<= 1){complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));for(int j = 0;j < len;j += h){complex w(1,0);for(int k = j;k < j+h/2;k++){complex u = y[k];complex t = w*y[k+h/2];y[k] = u+t;y[k+h/2] = u-t;w = w*wn;}}}if(on == -1)for(int i = 0;i < len;i++)y[i].r /= len;
}
complex x1[N],x2[N];
char a[N/4],b[N/4];
int num[N];
int main()
{while(~scanf("%s%s",a,b)){int len1=strlen(a);int len2=strlen(b);int l=1;while(l<len1+len2) l<<=1;for(int i=len1-1;i>=0;i--) x1[i]=complex(a[len1-i-1]-'0',0);for(int i=len1;i<l;i++) x1[i]=complex(0,0);for(int i=len2-1;i>=0;i--) x2[i]=complex(b[len2-i-1]-'0',0);for(int i=len2;i<l;i++) x2[i]=complex(0,0);fft(x1,l,1);fft(x2,l,1);for(int i=0;i<l;i++) x1[i]=x1[i]*x2[i];fft(x1,l,-1);for(int i=0;i<l;i++) num[i]=x1[i].r+0.5;for(int i=0;i<l;i++){num[i+1]+=num[i]/10;num[i]%=10;}l=len1+len2-1;int f=0;for(int i=l;i>=0;i--){if(!f&&num[i]==0) continue;f=1;printf("%d",num[i]);}if(!f) puts("0");else puts("");}return 0;
}


这篇关于hdu 1402 A * B Problem Plus[【FFT】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/705929

相关文章

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2093 考试排名(sscanf)

模拟题。 直接从教程里拉解析。 因为表格里的数据格式不统一。有时候有"()",有时候又没有。而它也不会给我们提示。 这种情况下,就只能它它们统一看作字符串来处理了。现在就请出我们的主角sscanf()! sscanf 语法: #include int sscanf( const char *buffer, const char *format, ... ); 函数sscanf()和

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

hdu 1754 I Hate It(线段树,单点更新,区间最值)

题意是求一个线段中的最大数。 线段树的模板题,试用了一下交大的模板。效率有点略低。 代码: #include <stdio.h>#include <string.h>#define TREE_SIZE (1 << (20))//const int TREE_SIZE = 200000 + 10;int max(int a, int b){return a > b ? a :

hdu 1166 敌兵布阵(树状数组 or 线段树)

题意是求一个线段的和,在线段上可以进行加减的修改。 树状数组的模板题。 代码: #include <stdio.h>#include <string.h>const int maxn = 50000 + 1;int c[maxn];int n;int lowbit(int x){return x & -x;}void add(int x, int num){while

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

hdu 3790 (单源最短路dijkstra)

题意: 每条边都有长度d 和花费p,给你起点s 终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。 解析: 考察对dijkstra的理解。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstrin