Leaf原理分析

2024-02-13 13:08
文章标签 分析 原理 leaf

本文主要是介绍Leaf原理分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、Snowflake生成ID的模式

snowflake算法对于ID的位数是上图这样分配的:

1位的符号位+41位时间戳+10位workID+12位序列号

加起来一共是64个二进制位,正好与Java中的long类型的位数一样。

美团的Leaf框架对于snowflake算法进行了一些位数调整,位数分配是这样:

最大41位时间差+10位的workID+12位序列化

虽然看美团对Leaf的介绍文章里面说:

Leaf-snowflake方案完全沿用snowflake方案的bit位设计,即是“1+41+10+12”的方式组装ID号。

其实看代码里面是没有专门设置符号位的,如果timestamp过大,导致时间差占用42个二进制位,时间差的第一位为1时,可能生成的id转换为十进制后会是负数:

//timestampLeftShift是22,workerIdShift是12
long id = ((timestamp - twepoch) << timestampLeftShift) | (workerId << workerIdShift) | sequence;

时间差是什么?

因为时间戳是以1970年01月01日00时00分00秒作为起始点,其实我们一般取的时间戳其实是起始点到现在的时间差,如果我们能确定我们取的时间都是某个时间点以后的时间,那么可以将时间戳的起始点改成这个时间点,Leaf项目中,如果不设置起始时间,默认是2010年11月4日09:42:54,这样可以使得支持的最大时间增长,Leaf框架的支持最大时间是起始点之后的69年。

 

workID怎么分配?

Leaf使用Zookeeper作为注册中心,每次机器启动时去Zookeeper特定路径/forever/下读取子节点列表,每个子节点存储了IP:Port及对应的workId,遍历子节点列表,如果存在当前IP:Port对应的workId,就使用节点信息中存储的workId,不存在就创建一个永久有序节点,将序号作为workId,并且将workId信息写入本地缓存文件workerID.properties,供启动时连接Zookeeper失败,读取使用。因为workId只分配了10个二进制位,所以取值范围是0-1023。

 

序列号怎么生成?

序列号是12个二进制位,取值范围是0到4095,主要保证同一个leaf服务在同一毫秒内,生成的ID的唯一性。
序列号是生成流程如下:
        1.当前时间戳与上一个ID的时间戳在同一毫秒内,那么对sequence+1,如果sequence+1超过了4095,那么进行等待,等到下一毫秒到了之后再生成ID。
        2.当前时间戳与上一个ID的时间戳不在同一毫秒内,取一个100以内的随机数作为序列号。

if (lastTimestamp == timestamp) {sequence = (sequence + 1) & sequenceMask;if (sequence == 0) {//seq 为0的时候表示是下一毫秒时间开始对seq做随机sequence = RANDOM.nextInt(100);timestamp = tilNextMillis(lastTimestamp);}
} else {//如果是新的ms开始sequence = RANDOM.nextInt(100);
}
lastTimestamp = timestamp;

二、segment生成ID的模式

这种模式需要依赖MySQL,表字段biz_tag代表业务名,max_id代表该业务目前已分配的最大ID值,step代表每次Leaf往数据库请求时,一次性分配的ID数量。

大致流程就是每个Leaf服务在内存中有两个Segment实例,每个Segement保存一个分段的ID:

  • 一个Segment是当前用于分配ID,有一个value属性保存这个分段已分配的最大ID,以及一个max属性这个分段最大的ID。
  • 另外一个Segement是备用的,当一个Segement用完时,会进行切换,使用另一个Segement进行使用。
  • 当一个Segement的分段ID使用率达到10%时,就会触发另一个Segement去DB获取分段ID,初始化好分段ID供之后使用。
Segment {private AtomicLong value = new AtomicLong(0);private volatile long max;private volatile int step;
}
SegmentBuffer {private String key;private Segment[] segments; //双bufferprivate volatile int currentPos; //当前的使用的segment的indexprivate volatile boolean nextReady; //下一个segment是否处于可切换状态private volatile boolean initOk; //是否初始化完成private final AtomicBoolean threadRunning; //线程是否在运行中private final ReadWriteLock lock;private volatile int step;private volatile int minStep;private volatile long updateTimestamp;
}

这篇关于Leaf原理分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/705607

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

hdu4407容斥原理

题意: 有一个元素为 1~n 的数列{An},有2种操作(1000次): 1、求某段区间 [a,b] 中与 p 互质的数的和。 2、将数列中某个位置元素的值改变。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.Inpu

hdu4059容斥原理

求1-n中与n互质的数的4次方之和 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWrit

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in