使用Python+OpenCV2进行图片中的文字分割(支持竖版)

2024-02-13 01:12

本文主要是介绍使用Python+OpenCV2进行图片中的文字分割(支持竖版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

把图片中的文字,识别出来,并将每个字的图片抠出来;

import cv2
import numpy as npHIOG = 50
VIOG = 3
Position = []'''水平投影'''
def getHProjection(image):hProjection = np.zeros(image.shape,np.uint8)# 获取图像大小(h,w)=image.shape# 统计像素个数h_ = [0]*hfor y in range(h):for x in range(w):if image[y,x] == 255:h_[y]+=1#绘制水平投影图像for y in range(h):for x in range(h_[y]):hProjection[y,x] = 255# cv2.imshow('hProjection2',cv2.resize(hProjection, None, fx=0.3, fy=0.5, interpolation=cv2.INTER_AREA))# cv2.waitKey(0)return h_def getVProjection(image):vProjection = np.zeros(image.shape,np.uint8);(h,w) = image.shapew_ = [0]*wfor x in range(w):for y in range(h):if image[y,x] == 255:w_[x]+=1for x in range(w):for y in range(h-w_[x],h):vProjection[y,x] = 255# cv2.imshow('vProjection',cv2.resize(vProjection, None, fx=1, fy=0.1, interpolation=cv2.INTER_AREA))# cv2.waitKey(0)return w_def scan(vProjection, iog, pos = 0):start = 0V_start = []V_end = []for i in range(len(vProjection)):if vProjection[i] > iog and start == 0:V_start.append(i)start = 1if vProjection[i] <= iog and start == 1:if i - V_start[-1] < pos:continueV_end.append(i)start = 0return V_start, V_enddef checkSingle(image):h = getHProjection(image)start = 0end = 0for i in range(h):pass#分割
def CropImage(image,dest,boxMin,boxMax):a=boxMin[1]b=boxMax[1]c=boxMin[0]d=boxMax[0]cropImg = image[a:b,c:d]cv2.imwrite(dest,cropImg)#开始识别
def DOIT(rawPic):# 读入原始图像origineImage = cv2.imread(rawPic)# 图像灰度化   #image = cv2.imread('test.jpg',0)image = cv2.cvtColor(origineImage,cv2.COLOR_BGR2GRAY)# cv2.imshow('gray',image)# 将图片二值化retval, img = cv2.threshold(image,127,255,cv2.THRESH_BINARY_INV)# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))# img = cv2.erode(img, kernel)# cv2.imshow('binary',cv2.resize(img, None, fx=0.3, fy=0.3, interpolation=cv2.INTER_AREA))#图像高与宽(h,w)=img.shape#垂直投影V = getVProjection(img)start = 0V_start = []V_end = []# 对垂直投影水平分割V_start, V_end = scan(V, HIOG)if len(V_start) > len(V_end):V_end.append(w-5)# 分割行,分割之后再进行列分割并保存分割位置for i in range(len(V_end)):#获取行图像if V_end[i] - V_start[i] < 30:continuecropImg = img[0:h, V_start[i]:V_end[i]]# cv2.imshow('cropImg',cropImg)# cv2.waitKey(0)#对行图像进行垂直投影H = getHProjection(cropImg)H_start, H_end = scan(H, VIOG, 40)if len(H_start) > len(H_end):H_end.append(h-5)for pos in range(len(H_start)):# 再进行一次列扫描DcropImg = cropImg[H_start[pos]:H_end[pos], 0:w]d_h, d_w = DcropImg.shape# cv2.imshow("dcrop", DcropImg)sec_V = getVProjection(DcropImg)c1, c2 = scan(sec_V, 0)if len(c1) > len(c2):c2.append(d_w)x = 1while x < len(c1):if c1[x] - c2[x-1] < 12:c2.pop(x-1)c1.pop(x)x -= 1x += 1# cv2.waitKey(0)if len(c1) == 1:Position.append([V_start[i],H_start[pos],V_end[i],H_end[pos]])else:for x in range(len(c1)):Position.append([V_start[i]+c1[x], H_start[pos],V_start[i]+c2[x], H_end[pos]])#根据确定的位置分割字符number=0for m in range(len(Position)):rectMin =  (Position[m][0]-5,Position[m][1]-5)rectMax =  (Position[m][2]+5,Position[m][3]+5)cv2.rectangle(origineImage,rectMin, rectMax, (0 ,0 ,255), 2)number=number+1#start-cropCropImage(origineImage,'result/' + '%d.jpg' % number,rectMin,rectMax)# cv2.imshow('image',cv2.resize(origineImage, None, fx=0.6, fy=0.6, interpolation=cv2.INTER_AREA))cv2.imshow('image',origineImage)cv2.imwrite('result/' + 'ResultImage.jpg' , origineImage)cv2.waitKey(0)#############################
rawPicPath = r"H:\TEMP\TEXT_PROCCESS\TEST05.jpg"
DOIT(rawPicPath)
#############################

这篇关于使用Python+OpenCV2进行图片中的文字分割(支持竖版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/704093

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma